Notre Dame Journal of Formal Logic Volume X, Number 1, January 1969

CONCERNING SOME PROPOSALS FOR QUANTUM LOGIC

C. W. LEININGER

The suggestion made in 1936 by Birkhoff and von Neumann and discussed by Birkhoff in [1], pp. 156-163 that a propositional algebra appropriate to quantum theory should have the structure of an orthocomplemented lattice has been widely discussed. More recently Kochen and Specker [2], pp. 177-189 have presented the idea of a partial Boolean algebra. We will call a partial Boolean algebra B complete if each Boolean subalgebra of B is complete.

It is the purpose of this note to point out that a complete partial Boolean algebra has an extension to an orthocomplemented lattice L, and thus may be considered as such a lattice in which the join and meet of a pair x, y of elements of L is of logical significance if and only if each of x and y belongs to the same Boolean subalgebra of L, i.e., x, y is a commeasurable pair in the sense of [2]. Otherwise x - y and x - y are meaningless for quantum logic although existing in the lattice-theoretic sense. Perhaps this observation will help to clarify one of the problems frequently mentioned (e.g. in [3], p. 369) which is involved in the structure of a logic for quantum theory.

Instead of using the definition of a partial Boolean algebra, it will be more convenient for our purpose to have recourse to the properties of a model thereof, since [2] p. 184, every partial Boolean algebra is isomorphic to some case of the model. Hence the statement that B is a partial Boolean algebra will mean that B is a list $(M, v, \neg, 0, 1)$ and I is a set such that if $i \in I$, then B_i is a Boolean algebra $(M_i, v_i, \neg_i, 0, 1)$ and

(i) $M = \bigcup_{i \in I} M_i$;

(ii) if h, i, $j \in I$, a, $b \in M_h$, a, $c \in M_i$ and b, $c \in M_j$, then there is a $k \in I$ such that $a, b, c \in M_k$;

(iii) if $i, j \in I$, there is a $k \in I$ such that $M_i \cap M_j = M_k$;

(iv) if $a, b \in M$, then $a \lor b \in M$ if and only if there is an $i \in I$ such that $a, b \in M_i$, whence $a \lor b = a \lor ib$;

(v) if $a \in M_i$, then $\exists a = \exists_i a$.

Received February 20, 1968