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CONCERNING SOME PROPOSALS FOR QUANTUM LOGIC

C. W. LEININGER

The suggestion made in 1936 by Birkhoff and von Neumann and
discussed by Birkhoff in [1], pp. 156-163 that a propositional algebra
appropriate to quantum theory should have the structure of an orthocomple-
mented lattice has been widely discussed. More recently Kochen and
Specker [2] pp. 177-189 have presented the idea of a partial Boolean
algebra. We will call a partial Boolean algebra B complete if each Boolean
subalgebra of B is complete.

It is the purpose of this note to point out that a complete partial
Boolean algebra has an extension to an orthocomplemented lattice L, and
thus may be considered as such a lattice in which the join and meet of a
pair x, y of elements of L is of logical significance if and only if each of x
and y belongs to the same Boolean subalgebra of L, i.e., x, y is a com-
measurable pair in the sense of [2]. Otherwise x —y and x~y are
meaningless for quantum logic although existing in the lattice-theoretic
sense. Perhaps this observation will help to clarify one of the problems
frequently mentioned (e.g. in [3], p. 369) which is involved in the structure
of a logic for quantum theory.

Instead of using the definition of a partial Boolean algebra, it will be
more convenient for our purpose to have recourse to the properties of a
model thereof, since [2] p. 184, every partial Boolean algebra is isomorphic
to some case of the model. Hence the statement that B is a partial Boolean
algebra will mean that B is a list (M, v, 1, 0, 1) and [ is a set such that if
iel, then B; is a Boolean algebra (M;, v;, 1;, 0, 1) and

(i) M= L€J1Mi5

(ii) if &, ¢, jeI, a, be My, a, ceM; and b, ceM;, then there is akel such
thata, b, ce My;
(iii) if ¢, jel, there is a kel such that M; N M; = My
(iv) if @, beM, then a v beM if and only if there is an iel such that
a,beM;, whence av b= avib;
(v) if aeM;, then 1a = 1;a.
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