GENERALIZATION OF A RESULT OF HALLDÉN ## ROBERT V. KOHN We take M, \vee , \neg as primitive connectives; let \mathcal{L} be the set of all wffs in these connectives. We take the connectives \wedge , \neg , \neg , \equiv , and L to be defined in the usual ways. If $\alpha \in \mathcal{L}$, we write $\mathcal{L}[\alpha]$ for the smallest subset of \mathcal{L} containing α and closed under the connectives M, \vee , \neg . A *modal logic* is a proper subset of \mathcal{L} which is closed under the rules of uniform substitution and modus ponens, and contains all tautologies. If L_1 and L_2 are modal logics, then L_1 is an *extension* of L_2 iff $\mathsf{L}_2 \subseteq \mathsf{L}_1$. Let PC denote the classical propositional calculus. For any wff $\alpha \in \mathcal{L}$, let $\hat{\alpha}$ be the wff of PC obtained by erasing all occurrences of "M" in α . Lemma Let $\alpha \in \mathcal{L}[p]$, and suppose $|\overline{PC}\widehat{\alpha} \supset p$. Then there is an $n \ge 1$ such that $|\overline{\beta}| \ge 2$ $\alpha \to M^n p$. Proof: First of all, notice that for any wffs γ , δ and any affirmative modality F, if $|_{\overline{S2}}\gamma \to \delta$ then $|_{\overline{S2}}F \gamma \to F\delta$; moreover, for each such F there is an n such that $|_{\overline{S2}}Fp \to M^np$. The proof now proceeds by induction, showing that the Lemma is true of both β and $\neg \beta$ for every $\beta \in \mathcal{L}[p]$. In the case $\beta = p$, the assertion of the Lemma is trivial for β and vacuous for $\neg \beta$. Suppose the Lemma has been verified for both γ and $\neg \gamma$. If β is $M\gamma$ and $|_{\overline{PC}}\hat{\beta} \supset p$, then $|_{\overline{PC}}\hat{\gamma} \supset p$, so by hypothesis there is an n such that $|_{\overline{S2}}\gamma \to M^np$. Then $|_{\overline{S2}}M\gamma \to M^{n+1}p$. If β is $\neg M\gamma$ and $|_{\overline{PC}}\hat{\beta} \supset p$, then $|_{\overline{PC}}\hat{\gamma} \supset p$. So there is an n such that $|_{\overline{S2}}\neg \gamma \to M^np$. Then $|_{\overline{S2}}L\neg \gamma \to LM^np$, so $|_{\overline{S2}}\neg M\gamma \to M^{n+1}p$. Now suppose the Lemma has been verified for $\gamma_1, \gamma_2, \neg \gamma_1$, and $\neg \gamma_2$. If β is $\gamma_1 \vee \gamma_2$ and $|_{\overline{PC}}\hat{\beta} \supset p$, then $|_{\overline{PC}}\hat{\gamma}_1 \supset p$ and $|_{\overline{PC}}\hat{\gamma}_2 \supset p$. So there are n_1 and n_2 such that $|_{\overline{S2}}\gamma_1 \to M^np$ and $|_{\overline{PC}}\hat{\gamma}_1 \to p$ and $|_{\overline{PC}}\hat{\gamma}_2 \to p$. Put $n = \max(n_1, n_2)$; then $|_{\overline{S2}}\gamma_1 \vee \gamma_2 \to M^np$. Now suppose β is $\neg (\gamma_1 \vee \gamma_2)$, and $|_{\overline{PC}}\hat{\beta} \supset p$. Then $|_{\overline{PC}}(\neg \hat{\gamma}_1 \wedge \neg \hat{\gamma}_2) \supset p$; since γ_1 and γ_2 are in $\mathcal{L}[p]$, it follows that $|_{\overline{\gamma}_1} \supset p$ for either i = 1 or i = 2. Then by hypothesis, there is an n such that $|_{\overline{S2}}\neg \gamma_i \to M^np$, so $|_{\overline{S2}}\neg (\gamma_1 \vee \gamma_2) \to M^np$. The induction is now complete. The modal logic Tr of [2] is that modal logic which contains all $\alpha \in \mathcal{L}$ such that $\operatorname{Fr} \hat{\alpha}$. McKinsey [3] has shown that Tr is the unique Post-complete extension of S4.