
583
Notre Dame Journal of Formal Logic
Volume XVI, Number 4, October 1975
NDJFAM

NON-DEFINABILITY OF CERTAIN SEMANTIC PROPERTIES
OF PROGRAMS

RICHARD A. DeMILLO

1 Introduction This paper has a two-fold purpose. First, we address
ourselves to the problem of describing programs with languages which are,
in some sense, "related" to the programming language in question. In
particular, we examine generalizations of the halting and equivalence
problems and show that no uniform first order methods of description can
exist. Second, we illustrate the very natural sort of correspondence which
may be established between results in mathematical logic and a class of
foundational problems in computer science. What we will refer to as
programs, are variously called program schemata and abstract programs
in the literature. The question of description or definability has been
examined by a number of authors. Positive results relating to definability
of termination appear in Engeler [2] and Manna [4], Equivalence and
decision problems are given thorough treatment in Luckham, Park, and
Paterson [3]. The import of definability results is indicated in Manna and
Waldinger [5]. Details of the logical results are available in Bell and
Slomson [l] and vanFraassen [6].

2 The LangΊMges J£ andfii^Q) By the language -£ we mean a first order
predicate calculus with identity and the following primitive alphabet:

1. denumerably many individual variables: x0, xl9 . . . (in some cases a
variable may be denoted by y^);
2. function symbols of specified addicity and unspecified number: fo,fi, . . . ;
3. predicate s y m b o l s of specified addicity and unspecified number:
q0, ^ i ,

Function symbols taking 0—arguments are also called individual constants
(denoted a0, al9 . . .). When / is either a function or a function symbol, we
let f\z) be z when n = 0 and f(fn~\z)) when n > 0. J£ is completely specified
when we set down its rules of formation, logical axioms, and rules of
inference, all in the usual fashion. P{Jθ is a programming language
derived from <£. About P(*Q)'s exact structure we can be quite informal.
Programs in P(£) are taken to be constructed from the following
components:

Received May 7, 1973

