FORMULAS WITH TWO GENERALIZED QUANTIFIERS

DANIEL GOGOL

In this paper we give a partial solution to the two problems Yasuhara presents at the end of [2]. Yasuhara shows that in formal languages having finitary predicate and function symbols and in which "\"\", "\", "\", and "\" have their usual meanings and "($\forall x$)" is equivalent to "\"($\exists x$)\" and, for some k, "($\exists x$)" means "there exist at least ω_k elements x such that," the set of closed formulas which are true in all models of cardinality $\geqslant \omega_k$ is the same for each $k \geqslant 0$ and each corresponding interpretation of "($\exists x$)". He calls this set of formulas VI. The set of closed formulas not in VI is called SI.

For each finite number n, "($\exists x$)" can be interpreted to mean "there exist at least n elements x such that," and then the set of closed formulas true in all models having at least n elements is called V_n . The set of closed formulas not in V_n is called S_n . The intersection of all the sets V_n is called V_n . If V is a set of formulas, then by V, V0 we mean the set of formulas in V1 having only 2 quantifiers.

Our results are the following:

Theorem 1 $VF,2 \subsetneq VI,2 \subsetneq V_1,2$. Theorem 2 VF,2 and VI,2 and $V_1,2$ are recursive.

Proof of Theorem 1: We first prove $VF,2 \subseteq VI,2$.

Case 1. If $(\exists x)(\forall y) P(x,y)$ is in VF,2, then it is in V₁, by definition. So $(\forall x)(\exists y) \sim P(x,y)$ is not in S₁ and therefore $\sim P(a_1,a_2) \wedge \sim P(a_2,a_3) \wedge \ldots \wedge \sim P(a_n,a_1)$ is, for all n, a quantifier-free formula which is not true under any valuation of its atomic formulas, because otherwise $\{a_1,a_2,\ldots,a_n\}$ would be the universe of a model for $(\forall x)(\exists y) \sim P(x,y)$. But this means that if " $(\exists x)$ " is given the interpretation "there exist at least ω_0 elements x such that," then $(\forall x)(\exists y) \sim P(x,y)$ is unsatisfiable. Because if \mathfrak{M} were a model for it, then there would be an element a_1 in \mathfrak{M} such that there were infinitely many elements a_2 in \mathfrak{M} such that $\mathfrak{M} \vdash \sim P(a_1,a_2)$. But all but a finite number of these elements a_2 would have infinitely many elements a_3 in \mathfrak{M} such that $\mathfrak{M} \vdash \sim P(a_2,a_3)$. Thus we can find elements a_1,a_2 , and a_3 in

 \mathfrak{M} such that $\mathfrak{M} \vdash \sim P(a_1, a_2) \land \sim P(a_2, a_3)$.