Notre Dame Journal of Formal Logic Volume XV, Number 2, April 1974 NDJFAM

A STUDY OF $\mathcal Z$ MODAL SYSTEMS

R. I. GOLDBLATT

In [10], Sobociński has shown that the addition to various S4-extensions of Zeman's formula

Z1
$$LMp \cdot LMq \rightarrow (M(p \cdot q) \rightarrow LM(p \cdot q))$$

generates a new family that he refers to as the Z modal systems. In this paper a completeness proof is given for the system Z1 = S4 + Z1, and the finite model property is established. Since the system is finitely axiomatisable its decidability follows. Furthermore it is shown that each Z modal system is the intersection of S5 with some system from family K.

In the field of S4, Z1 is inferentially equivalent to

Z2
$$L(LMp \rightarrow MLp) \lor L(Mq \rightarrow LMq)$$

the formula added to S4.4 by Schumm to obtain the system now called S4.9 (*cf.* Sobociński [9], p. 361)

(1)	$LM(p \lor q) \cdot LM(\sim p \lor q) \rightarrow (M((p \lor q) \cdot (\sim p \lor q)))$	$(q)) \rightarrow LM((p \lor q) . (\sim p \lor q)))$
		Z1 , $p/p \lor q$, $q/\sim p \lor q$
(2)	$(p \lor q) . (\sim p \lor q) \leftrightarrow q$	PC
(3)	$Mq ightarrow M((p \lor q) \ . \ (\sim p \lor q))$	(2), C2
(4)	$LM((p \lor q) . (\sim p \lor q)) - LMq$	(2), C2
(5)	$LMp \rightarrow LM(p \lor q)$	C2
(6)	$\sim MLp \rightarrow LM(\sim p \lor q)$	C2
(7)	LMp . ~ $MLp \rightarrow (Mq \rightarrow LMq)$	(1), (3), (4), (5), (6), PC
(8)	$(LMp \rightarrow MLp) \lor (Mq \rightarrow LMq)$	(7), PC
(9)	$M(LMp \rightarrow MLp) \lor L(Mq - LMq)$	(8), C2
(10)	M(LMp ightarrow MLp) ightarrow (LMp ightarrow MLp)	S4
(11)	$(LMp \rightarrow MLp) \rightarrow L(LMp \rightarrow MLp)$	Z1, S4 (<i>cf.</i> [1])
Z2	$L(LMp \rightarrow MLp) \lor L(Mq \rightarrow LMq)$	(9), (10), (11), PC

This shows that Z1 contains the system S4 + Z2. We shall subsequently establish the converse in two different ways.

Definitions and discussion of the model-theoretic concepts used below are given in Segerberg [5], [6], and [7] (*cf.* also the Metatheorem of [1]).

Received February 1, 1972