Notre Dame Journal of Formal Logic Volume XIII, Number 3, July 1972 NDJFAM

VARIATIONS IN DEFINITION OF ULTRAPRODUCTS OF A FAMILY OF FIRST ORDER RELATIONAL STRUCTURES

WILFRED G. MALCOLM

Two variations are made in the standard definitions, cf. [1], of an ultraproduct of a family of first order relational structures with respect to a chosen ultrafilter X of the index set I. The first variation, following a method used by W. A. J. Luxemburg, cf. [2] in the construction of higher order ultraproducts, relaxes the requirement of similarity on the members of the family. The second variation uses subfilters of X to define the individuals and relations of the ultraproduct.

In section 1 the construction of the ultraproduct with these variations is set out and some consequences developed, particularly those relating to the identity relation. In section 2 a family of similar structures is taken and a necessary and sufficient condition is established under which the first variation produces more relations, from an extensional view-point, than the standard definition.

1 Let $\{\mathbf{M}_i : i \in I\}$ be a collection of first order relational structures. For each *i*, let $\mathbf{M}_i = \{R_i^0; R_i^1, R_i^2, \ldots\}$, where R_i^0 is the class (non empty) of individuals in the *i*th structure and, for each positive integer k, R_i^k is the class of *k*-placed relations of the structure. Each R_i^k contains at least the empty relation and each R_i^2 contains the identity relation denoted by \mathbf{e}_i . It is further assumed that the distinct members of each R_i^k are distinct from a set-theoretic and extensional point of view. Finally, if $a_1, \ldots, a_k \in R_i^0$ and $s^k \in R_i^k$ then " $s^k(a_1, \ldots, a_k)$ " denotes the fact that a_1, \ldots, a_k are related by s^k .

Let X be an ultrafilter defined on I. For each $k \ge 0$, X^k is a subfilter of X; that is X^k is a subclass of X and is a filter. For each $k \ge 0$, let R_1^k be the class $\{f^k: f^k: I \rightarrow \bigcup \{R_i^k: i \in I\}$ and for all $i \in I, f^k(i) \in R_i^k\}$. Let \sim_k denote the relation defined on R_1^k by: for all f^k , $g^k \in R_1^k$, $f^k \sim_k g^k$ if, and only if, $\{i: f^k(i) = g^k(i)\} \in X^k$.

Lemma 1. For each integer $k \ge 0$, \sim_k is an equivalence relation.

Proof: Immediate.

Received November 26, 1970

394