Notre Dame Journal of Formal Logic Volume XIII, Number 3, July 1972 NDJFAM

DUALS OF SMULLYAN TREES

HUGUES LEBLANC and D. PAUL SNYDER

1. As readers of Jeffrey or Smullyan know, the consistency of a finite set S of wffs from the sentential calculus (SC) can be tested by means of a tree, called here a *Smullyan tree*.¹ The branches of the tree, which are gotten by breaking up each member of S into shorter wffs, breaking up these shorter wffs into still shorter ones, and so on, represent the various ways in which the members of S could be true. Those branches (if any) on which both an atomic wff (one of the letters 'P', 'Q', 'R', etc.) and its negation occur are said to be *closed*, the rest to be *open*. And the method guarantees that:

(1) If every branch of the tree is closed, S (the set tested) is inconsistent, whereas

(2) If at least one branch stays open, S is consistent, and a truth-value assignment on which all the members of S are true can be read off any open branch of the tree.

When '~', '&', 'v', and ' \supset ' serve as primitive connectives, the rules for breaking up truth-functional compounds are seven in number:²

2. When ' \equiv ' also serves as a primitive connective, two extra rules serve to break up compounds of the sort $A \equiv B$ or the sort $\sim (A \equiv B)$:

^{1.} Concerning Smullyan trees, see [4], [5], and [6]. We of course take a set S of the sort described to be (semantically) consistent if there is a truth-value assignment to the atomic components of the members of S on which all these members are true (i.e., get a T).