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ON RAMSEY’S THEOREM AND THE AXIOM OF CHOICE

GABRIELE LOLLI

It is known that Ramsey’s theorem cannot be proved in ZF without the
axiom of choice (see, e.g., Kleinberg [2]) but there does not seem to exist
in the literature, or at least be widely recognized, a clear cut statement of
the exact relationship between this combinatorial result and the principle
of choice (in Drake [1], p. 72, the problem is mentioned but only a partial
answer is given). The aim of this note* is to write down a proof of the

Proposition Ramsey’s theovem is equivalent to the axiom of choice for
countable families of finite sets.

For a set X, let [X]® be the set of unordered pairs from X; if f: [X]* — 2
is a partition of [XJ into two disjoint sets, a set ¥ C X is said to be
homogeneous for f if f[[Y] is constant. Then by Ramsey’s theorem we
mean the statement

(RT) Any partition f: [ X — 2 of an infinite set X possesses an infinite
homogeneous set

which is the crucial step of Ramsey [3].

We abbreviate with (CCF) the axiom of choice for countable families of
non-empty finite sets; (CCF) is equivalent in ZF to Konig’s lemma

(KL) Any infinite finitary trvee has an infinite branch

and also (KL) = (RT) (see, e.g., Drake [1], p. 203). It remains to be shown
that (RT) = (KL); we prove it in a roundabout way through the following
weak form of compactness for propositional logic

(CPL) Let S be a countable set of propositional sentences over an infinite
set of propositional letters; then S has a model iff every finite subset of S
has a model.

*The author is associated to Consiglio Nazionale delle Recerche, GNSAGA, Section 5.
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