Notre Dame Journal of Formal Logic Volume XVII, Number 4, October 1976 NDJFAM

A NOTE ON EVALUATION MAPPINGS

HOWARD C. WASSERMAN

Let \mathcal{L} be a functionally complete sentential language. Let $\Phi: \mathcal{L}^n \times \mathcal{A} \rightarrow \{0, 1\}$, where $n \ge 1$ and \mathcal{A} is the set of all assignments (i.e., mappings from the set V of all variables to $\{0, 1\}$). Then Φ shall be called an *evaluation mapping on* \mathcal{L} in case for all $\varphi_1, \ldots, \varphi_n \in \mathcal{L}$ and all $\mathfrak{A}, \mathfrak{A}' \in \mathcal{A}$, if \mathfrak{A} and \mathfrak{A}' agree on the variables occurring in $\varphi_1, \ldots, \varphi_n$ then $\Phi(\varphi_1, \ldots, \varphi_n, \mathfrak{A}) = \Phi(\varphi_1, \ldots, \varphi_n, \mathfrak{A}')$. The notion of evaluation mapping is a syntactico-semantic generalization of the usual notion of truth-functional connective. For $S \subseteq \mathcal{L}$ and Φ an (n-ary) evaluation mapping:

(1) Φ is truth-functional on S in case for all $\varphi_1, \ldots, \varphi_n, \varphi'_1, \ldots, \varphi'_n \in S$ and $\mathfrak{A}, \mathfrak{A}' \in \mathcal{A}, \text{ if } V_{\mathfrak{A}}(\varphi_i) = V_{\mathfrak{A}'}(\varphi'_i)(1 \leq i \leq n), \text{ then } \Phi(\varphi_1, \ldots, \varphi_n, \mathfrak{A}) = \Phi(\varphi'_1, \ldots, \varphi''_n, \mathfrak{A}').$

(2) Φ is Boolean on S in case there is $\varphi \in \mathcal{L}$ with *n* variables such that for all $\varphi_1, \ldots, \varphi_n \in S$ and every $\mathfrak{A} \in \mathcal{A}, \Phi(\varphi_1, \ldots, \varphi_n, \mathfrak{A}) = V_{\mathfrak{A}} \left(\varphi \begin{bmatrix} \alpha_1, \ldots, \alpha_n \\ \varphi_1, \ldots, \varphi_n \end{bmatrix} \right)$, where $\alpha_1, \ldots, \alpha_n$ are the variables occurring in $\varphi, \varphi \begin{bmatrix} \alpha_1, \ldots, \alpha_n \\ \varphi_1, \ldots, \varphi_n \end{bmatrix}$ is the sentence resulting from the simultaneous substitution in φ of φ_i for α_i $(1 \le i \le n)$, and $V_{\mathfrak{A}}$ is the sentential valuation induced by \mathfrak{A} .

Theorem For every $S \subseteq \mathcal{L}$ and every evaluation mapping Φ , Φ is Boolean on S if and only if Φ is truth-functional on S.

Proof: Necessity is obvious. We prove sufficiency. Suppose that $\Phi: \mathcal{L}^n \times \mathcal{A} \to \{0, 1\}$ is truth-functional on S. Let $f: \{0, 1\}^n \to \{0, 1\}$ be the Boolean function such that for all $x_1, \ldots, x_n \in \{0, 1\}, f(x_1, \ldots, x_n) = \Phi(p_1, \ldots, p_n, \mathfrak{A})$, where $\mathfrak{A}(p_i) = x_i$ $(1 \leq i \leq n)$, and p_1, \ldots, p_n are the first *n* variables of *V*. Then, by the definition of evaluation mapping (the full force of truth-functionality not being needed), *f* is well-defined, independent of the choice of \mathfrak{A} . Let $\varphi(=\varphi(p_1, \ldots, p_n)) \in \mathcal{L}$ express the function *f*. Then, for every $\mathfrak{A} \in \mathcal{A}$ and for all $\varphi_1, \ldots, \varphi_n \in S$, letting $\mathfrak{A}' \in \mathcal{A}$ such that $\mathfrak{A}'(p_i) = V_{\mathfrak{A}}(\varphi_i)(1 \leq i \leq n)$, we have (since Φ is truth-functional) that

Received July 8, 1973