Notre Dame Journal of Formal Logic Volume 22, Number 2, April 1981

Automorphisms of ω-Cubes

J. C. E. DEKKER

I Preliminaries The word set is used for a collection of numbers, class for a collection of sets. We write ε for the set of all numbers, o for the empty set of numbers, card Γ for the cardinality of the collection Γ , and $\mathcal{P}_{fin}(\alpha)$ for the class of all finite subsets of α . If f is a function of n variables, i.e., a mapping from a subcollection of ε^n into ε , we denote its domain and range by δf and ρf respectively. A collection of functions is called a family. The image under f of the number f is denoted by f_n or f(n), sometimes by both in the same context. We write $\alpha \sim \beta$ for α equivalent to β , $\alpha \simeq \beta$ for α recursively equivalent to β , and $\alpha \oplus \beta$ for the symmetric difference of α and β . The collection of all recursive equivalence types (RETs) is denoted by Ω , that of all isols by Λ . Moreover, $\Omega_0 = \Omega - (0)$, $\Lambda_0 = \Lambda - (0)$, $\varepsilon_0 = \varepsilon - (0)$. The reader is referred to [4] and [8] for the basic properties of RETs and isols. Let $\langle \rho_n \rangle$ be the canonical enumeration of the class $\mathcal{P}_{fin}(\varepsilon)$, i.e., let $\rho_0 = \sigma$ and

$$\rho_{n+1} = \begin{cases} (a_1, \dots, a_k), \text{ where} \\ n+1 = 2^{a(1)} + \dots + 2^{a(k)}, \\ a_1, \dots, a_k \text{ distinct.} \end{cases}$$

Put $r_n = \operatorname{card} \rho_n$, then r_n is a recursive function. If σ is a finite set, can σ denotes the *canonical index* of σ , i.e., the unique number i such that $\sigma = \rho_i$. For $\alpha \subset \varepsilon$, $i \in \varepsilon$,

$$[\alpha; i] = \{x | \rho_x \subset \alpha \& r_x = i\}, \ 2^{\alpha} = \{x | \rho_x \subset \alpha\} \text{ so that } \alpha \simeq \beta \Rightarrow (\forall i)[[\alpha; i] \simeq [\beta; i]], \ \alpha \simeq \beta \Rightarrow 2^{\alpha} \simeq 2^{\beta}.$$

If f is a function of one variable, $\delta f^* = 2^{\delta f}$, $f^*(0) = 0$ and

$$f^*(2^{a(1)} + \ldots + 2^{a(k)}) = 2^{fa(1)} + \ldots + 2^{fa(k)},$$

for distinct elements a_1, \ldots, a_k of δf . Equivalently,

$$\delta f^*=2^{\delta f},\,\rho_{f^*(x)}=f(\rho_x).$$

Received June 23, 1980; revised August 11, 1980