On the Number of Nonisomorphic Models of Cardinality λ L_{∞λ}-Equivalent to a Fixed Model

SAHARON SHELAH

A well-known result of Scott [6] is that if \mathfrak{M} and \mathfrak{N} are countable and $\mathfrak{M} \equiv \mathbb{I}_{\infty\omega} \mathfrak{N}$, then $\mathfrak{M} \cong \mathfrak{N}$. Later, Chang [2] extended this to show that if $cf(\lambda) = \aleph_0$, \mathfrak{M} and \mathfrak{N} have cardinality λ and $\mathfrak{M} \equiv \mathbb{I}_{\infty\lambda} \mathfrak{N}$, then $\mathfrak{M} \cong \mathfrak{N}$. More recently, Palyutin [5] has shown that if V = L, \mathfrak{M} has cardinality \aleph_1 , and $K = \{\mathfrak{N} : \mathfrak{N} \equiv \mathbb{I}_{\infty\omega_1} \mathfrak{M}$ and $\mathfrak{N} = \aleph_1\}$, then, up to isomorphism, K contains either one member or 2^{\aleph_1} members. It has long been known that the first case was not exclusive (cf. [4]).

For $\lambda = \aleph_1$ Palyutin needed the fact that V = L implies \diamond_S for every stationary $S \subseteq \omega_1$. In the Theorem below, we extend Palyutin's result to most other uncountable regular cardinals. Our proof, however, requires a stronger combinatorial principle of Beller and Litman [1] which does not hold in the case of λ weakly compact, and so the restriction in the Theorem.

By Shelah [6] the *GCH* is not enough to guarantee the conclusion even for $\lambda = \aleph_1$, because the "theorem" would imply the following. For λ regular and *G* a λ -free group of cardinality λ , up to isomorphism Ext(G, Z) has either 1 or 2^{λ} members. However, by [6], "*ZFC* + *GCH* + Ext(G, Z) = Q for some *G*, $\overline{\overline{G}} = \aleph_1$ " is consistent.

We now proceed to the theorem and its proof. The result was announced in [8].

^{*}This research was partially supported by the NSF and by the United States Israel Binational Science Foundation grant 1110.