Word Problems for Bidirectional, Single-Premise Post Systems

CHARLES E. HUGHES and DAVID W. STRAIGHT

Introduction A bidirectional, single-premise Post system is a Post canonical form F where, if $R_1 \rightarrow R_2$ is a rule, then $R_2 \rightarrow R_1$ is also a rule. One class of bidirectional Post systems, the Thue systems first defined in [7], have been extensively studied. Thue systems with unsolvable word problems were shown to exist by Post [5] and, more recently, Overbeek [4] demonstrated that this class of problems represents every recursively enumerable (r.e.) many-one degree of unsolvability. In this paper we extend Overbeek's result to include bidirectional extensions of Post normal systems, tag systems, and the one-letter systems introduced by Hosken [1].

Post Systems Let Σ be a finite set of symbols and let Q_1, Q_2, \ldots, Q_n be new symbols called *operational variables*. A word over $\Sigma \cup \{Q_1, Q_2, \ldots, Q_n\}$, containing at least one operational variable, is called a *word form*. An *identification* of the operational variables Q_1, Q_2, \ldots, Q_n is a set of pairs $\{(Q_i, W_i)|1 \le i \le n\}$ where each W_i is a word over Σ . Let $Y \equiv y_1Q_{i_1}y_2Q_{i_2}\ldots$ $y_mQ_{i_m}y_{m+1}$ be a word form where $y_1, y_2, \ldots, y_{m+1}$ are words over Σ and $Q_{i_1}, Q_{i_2}, \ldots, Q_{i_m}$ are operational variables. Then Y' is the result of applying the identification $\Phi = \{(Q_i, W_i)|1 \le i \le n\}$ to Y, denoted Y^{Φ} , if $Y' \equiv$ $y_1W_{i_1}y_2W_{i_2}\ldots y_mW_{i_m}y_{m+1}$.

A single-premise Post system $F = (\Sigma, V, P)$ is such that Σ is a finite alphabet, V is a finite set of operational variables, and P is a finite set of rules, each of the form $R_1 \rightarrow R_2$, where R_1 and R_2 are word forms. Let W_1 and W_2 be words over Σ . Then W_2 is said to be an *immediate successor* of W_1 in F, denoted $(W_1, W_2)_F$, if there exists some rule of $P, R_1 \rightarrow R_2$, and some identification Φ of V such that $R_1^{\Phi} \equiv W_1$ and $R_2^{\Phi} \equiv W_2$. W_2 is said to be *derivable* from W_1 in F, denoted $[W_1, W_2]_F$ (or $[W_1, W_2]$, whenever F is understood from context), if there exists a sequence Y_1, Y_2, \ldots, Y_k , where $k \ge 1$, of words over Σ such