Notre Dame Journal of Formal Logic Volume XX, Number 2, April 1979 NDJFAM

A BINARY SHEFFER OPERATOR WHICH DOES THE WORK OF QUANTIFIERS AND SENTENTIAL CONNECTIVES

ROBERT B. BRANDOM

In recent years, the range of propositional systems for which binary Sheffer operators have been discovered has broadened to include various systems with multiple truth-values, modalities, and multigrade connectives (see [1] for a review). In this paper*, I present an indigenously definable binary Sheffer operator for the first order predicate calculus, and show how the technique employed there to combine quantifiers and sentential connectives in a single operator can be used to extend the previously discovered binary Sheffer operators to capture *quantified* modal systems.

We consider a stroke language containing a countable number of individual variables x_1, x_2, \ldots , and for each positive integer *n*, a countable number of *n*-ary predicates. If *P* is an *n*-ary predicate letter, the result of concatenating *P* to the left of *n* variable letters is a well-formed formula. If *A* and *B* are wffs, A/B is a wff. For any positive integer *k* and any wff *A*, we introduce the notation A^k (the name of a formula) as follows:

$$A^{1} = A/(A/A)$$

if $A^{n} = B/C$, then $A^{n+1} = C/(C/C)$.

We interpret the stroke language in terms of a standard predicate language with the usual sentential connectives and quantifiers as follows. For any wffs A and B, let

$$A/B \rightleftharpoons (v) \sim (A \cdot B)$$

where \rightleftharpoons indicates semantic equivalence, and v is an individual variable such that:

(i) $v = x_k$ iff $B = A^k$ (ii) v is alphabetically the first variable which does not occur in A or B iff for all $k, B \neq A^k$.

262

^{*}I am grateful to Gerald Massey, Richard Grandy, and Richmond Thomason for useful conversations on the topic of this paper.