Notre Dame Journal of Formal Logic Volume 26, Number 1, January 1985

On the Possible Number no(M) = The Number of Nonisomorphic Models $L_{\infty,\lambda}$ -Equivalent to M of Power λ , for λ Singular

SAHARON SHELAH*

Introduction Let M be a model of power λ , with λ relations, each with $<\lambda$ places and of power $\leq \lambda$. What can be

$$no(M) = \{N/\cong : N \equiv_{\infty,\lambda} M, ||N|| = \lambda\}$$
?

We assume V = L (otherwise there are independence results (by [8])). It is known that

- (A) If $cf \lambda = \aleph_0$, it can be only 1 (by Scott [5] for $\lambda = \aleph_0$, and generally by Chang [1], essentially).
- (B) If λ is regular uncountable and not weakly compact it can be 1 or 2^{λ} (it can be 2^{λ} , see [3]; cannot be $\neq 1, 2^{\lambda}$: for $\lambda = \aleph_1$ by Palyutin [4], for any λ by [6]).
- (C) If λ is weakly compact $> \aleph_0$ then it can be any cardinal $\leq \lambda^+$ (by [7]). We prove here
 - (D) If λ is singular of uncountable cofinality, no(M) can be any cardinal $\chi < \lambda$ (and also $\chi = 2^{\lambda}$). (This follows by 3.18 here.)

So we answer the question from [7], bottom of p. 26. The second question there, top of p. 26, is answered trivially by 1.4.

Notation: We consider functions as relations.

^{*}This research was partially supported by the BSF (United States-Israel Binational Science Foundation) which the author wishes to thank.