The Simple Consistency of a Set Theory Based on the Logic CSQ

ROSS T. BRADY*

This paper proves the simple consistency of the set theory *CST*. *CST* has the Generalized Comprehension Axiom (*GCA*), $(\exists y)(\forall x)(x \in y \leftrightarrow A)$, and the Extensionality Rule, $x = y \Rightarrow x \in w \leftrightarrow y \in w$, where $x = y =_{df} (\forall z)(z \in x \leftrightarrow z \in y)$. *CST* is based on a logic *CSQ*, which is semantically described below.

CSQ Primitives

- 1. $\sim, \&, \rightarrow, \forall$ (connectives and quantifier)
- 2. f, g, h, f', \ldots (predicate constants)
- 3. x, y, z, x', \ldots (individual variables)
- 4. $a_1, a_2, a_3, a_4, \ldots$ (individual constants).

CSQ Formulas

- 1. An individual variable or constant is a term.
- 2. If t_1, \ldots, t_n are terms and f is a predicate constant, then $ft_1 \ldots t_n$ is an atomic formula.
- 3. If A and B are formulas and x is an individual variable then $\sim A$, A & B, $A \rightarrow B$ and $(\forall x)A$ are formulas.

A sentence is a formula with no free variables.

A CSQ model structure (CSQ m.s.) consists of ordered triples $\langle T, K, R \rangle$, such that K is a set, T is a member of K, and R is a two-place relation on K, with the following postulates holding: For $\alpha \in K$,

^{*}I acknowledge help from a referee of this Journal in choosing the logic CSQ, in using the abstract $\{xy: A\}$, in setting out the proof of Lemma 4, and in defining and using G(A(a)).