A Note on the Principle of Predication

GIANGIACOMO GERLA*

Let A be a well-formed formula of first-order modal logic whose only free variable is \underline{x} . We shall use the following abbreviations:

 $\underline{Mat}(A) \text{ for } (\underline{x})[\Diamond A \land \Diamond \sim A]$ $\underline{Form}(A) \text{ for } (\underline{x})[\Box A \lor \Box \sim A]$ $\underline{Ban}(A) \text{ for } ((\underline{x})\Box A) \lor ((\underline{x})\Box \sim A)$ $\underline{Pred}(A) \text{ for } Form(A) \lor Mat(A).$

We read <u>Mat(A)</u>, <u>Form(A)</u>, and <u>Ban(A)</u> respectively as: "A is material", "A is formal", and "A is banal"; Pred(A) is the assertion of the Principle of Predication for A.

We prove that if F and M are formulas whose only free variable is \underline{x} such that $\underline{Ban}(F)$, $\underline{Form}(F)$, and $\underline{Mat}(M)$ are true in any suitable T-model, then $\underline{Pred}(F \land M)$ and $\underline{Pred}(F \lor M)$ are not acceptable as axioms.

Theorem The formulas:

(1) $\sim \underline{Ban}(F) \wedge \underline{Form}(F) \wedge \underline{Mat}(M) \supset \sim \underline{Pred}(M \wedge F)$

(2) $\sim \underline{Ban}(F) \land \underline{Form}(F) \land \underline{Mat}(M) \supset \sim \underline{Pred}(M \lor F)$

are T-valid.

Proof: Let $\langle W, R, D, Q, V \rangle$ be a *T*-model ([1], p. 171) and $w_i \in W$. If $V(\sim \underline{Ban}(F) \land \underline{Form}(F) \land \underline{Mat}(M), w_i) = 1$ then $V(\sim \underline{Ban}(F), w_i) = 1$ and there exist *a*, $b \in D_i$ such that:

(3) $V^a(\Diamond \sim F, w_i) = 1$ and $V^b(\Diamond F, w_i) = 1$

where V^a and V^b are just like V except for assigning a and b, respectively, to <u>x</u>.

Received April 10, 1981; revised September 21, 1981

^{*}Work supported by the G.N.S.A.G.A. of Italian C.N.R.