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Nonstandard Propositional Logics

and Their Application to

Complexity Theory

MICHAEL EVANGELIST*

1 Introduction and background Let 2 * be the set of all finite-length
strings over some fixed alphabet 2 . Then a language (over 2) is a set L Q 2* .
Define P = \L\L is accepted by a deterministic Turing machine (DTM) in a
polynomial number of steps \, where the argument to the polynomial function
is the length of the input string. NP is the analogous family for nondetermin-
istic Turing machines (NDTMs).

The family P is widely considered to represent the class of feasibly
solvable computational problems. Representative of this class, in a sense to be
defined precisely, is the set S of satisfiable propositional formulas. Cook [3]
has shown that S is a member of P if, and only if, P = NP. (The proof method
is similar to that used by Buchi [ 1 ] for establishing the unsolvability of the
decision problem for the predicate calculus.)

Cook's result has far-reaching implications for the theory of computa-
tional complexity, because many interesting combinatorial problems are in
the family NP but are not known to be in P. (See Karp [7]) That is, each
of these problems can be solved in polynomial time if, and only if, there
is a polynomial time decision procedure for S. In addition, as Cook and
Reckhow [4] observe, P = NP would also imply an interesting philosophical
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