Topological Duality for Diagonalizable Algebras

CLAUDIO BERNARDI* and PAOLA D'AQUINO

Introduction Diagonalizable Algebras have been introduced by Magari in [9] to provide an algebraic treatment of logical incompleteness phenomena. We recall that a *Diagonalizable Algebra* (briefly a *DA*) is a structure $\mathfrak{A} = \langle A; +, \cdot, \nu, 0, 1, \tau \rangle$ where $\langle A; +, \cdot, \nu, 0, 1 \rangle$ is a Boolean Algebra,¹ and τ is a unary operation such that the following identities hold:

$$\tau 1 = 1; \qquad \tau(p \cdot q) = \tau p \cdot \tau q; \qquad \tau(\nu \tau p + p) = p.$$

Sometimes it is more convenient to consider the operation $\sigma = \nu \tau \nu$ instead of τ , because σ is a hemimorphism in the sense of Halmos ([8]).

If a theory T possesses a formula Theor(v) which numerates the set of theorems and satisfies the usual derivability conditions, we get the DA of T endowing the Lindenbaum Algebra of T with the operation τ defined as follows: $\tau[p] = [\text{Theor}(\bar{p})]$. In this way, many logical features of T can be discussed in purely algebraic terms. See [4] and [14] for general surveys about DA's and the corresponding modal logic GL.

A representation theorem for DA's has been obtained in [10] by applying Halmos' duality for hemimorphisms. More precisely, starting from a $DA \langle \mathfrak{A}; \tau \rangle$, a Boolean relation \mathfrak{R} can be defined on the Stone space X of \mathfrak{A} as follows:

$$x \, \Re \, y \quad \text{iff} \quad \tau p \in x \Rightarrow p \in y \quad \forall p \in \mathfrak{A} \quad [\text{iff } \sigma y \subseteq x];$$

and \mathfrak{R} can be proved to be transitive and relatively reverse well-founded (that is, every nonempty clopen set in X has a maximal element). Conversely, let a Boolean relation \mathfrak{R} be given on the Stone space X of a Boolean Algebra \mathfrak{A} ; if \mathfrak{R} is transitive and relatively reverse well-founded, the operation τ defined on \mathfrak{A} as follows:

(1)
$$\tau p = \{x/x \ \Re \ y \text{ for no } y \in \nu p\}$$
 (that is, $\sigma p = \{x/x \ \Re \ y \text{ for some } y \in p\}$)

Received September 12, 1986

^{*}Partially supported by a grant from the Italian CNR (USA-Italy Cooperative Science Program supported by NSF-CNR). We wish to thank Dick De Jongh, Giuliano Mazzanti, and Aldo Ursini for helpful discussions.