Cantor-Bendixson Spectra of ω -Stable Theories

CARLO TOFFALORI*

1 Introduction In the following, we shall mean by theory a first-order, countable, complete, quantifier-eliminable theory.

The idea of classifying ω -stable theories by the analysis of the Boolean algebras of the definable subsets of their countable models arises from [3] and is based on the remark that a theory T is ω -stable if and only if, for every countable model M of T, the Boolean algebra B(M) of the definable subsets of M is superatomic. In fact, it is well-known that, for every Boolean algebra B, an ascending chain $\{I_{\nu}(B): \nu \text{ ordinal}\}$ of ideals of B can be defined in this way:

- 1. $I_0(B) = \{0\}$
- 2. $I_1(B)$ is the ideal of finite elements of B
- 3. for every ordinal ν , $I_{\nu+1}(B)$ is the preimage in B of $I_1(B/I_{\nu}(B))$ in the canonical homomorphism of B onto $B/I_{\nu}(B)$
- 4. for every limit ordinal λ , $I_{\lambda}(B) = \bigcup_{\nu < \lambda} I_{\nu}(B)$.

In particular, when B is superatomic, there is an ordinal μ such that $I_{\mu}(B) = B$; let μ be the least ordinal with this property, then μ is a successor ordinal, and we may define:

 α_B = predecessor of μ = least ordinal ν such that $I_{\nu}(B) \neq B$ d_B = number of atoms in $B/_{I_{\alpha_B}(B)}$.

We have the following:

- (i) $\alpha_B < \omega_1$ if *B* is countable
- (ii) $d_B < \omega$
- (iii) for every ordered pair (α, d) with $1 \le \alpha < \omega_1, 1 \le d < \omega$, there is a countable superatomic Boolean algebra B such that $(\alpha, d) = (\alpha_B, d_B)$

^{*}I would like to thank Gregory Cherlin for his valuable contribution of ideas, suggestions, and patience, and the referee for his useful advice.