On *n*-Equivalence of Binary Trees

KEES DOETS*

Summary and introduction This note presents a simple characterization of the class of all trees which are *n*-elementary equivalent with B_m : the binary tree with one root all of whose branches have length *m* (for each pair of positive integers *n* and *m*). Section 1 contains some preliminaries. Section 2 introduces the class Q(n) of binary trees and proves that every tree in it is *n*-equivalent with B_m whenever $m \ge 2^n - 1$. Section 3 shows that, conversely, each *n*-equivalent of a B_m with $m \ge 2^n - 1$ belongs to Q(n). Finally, all *n*-equivalents of B_m for $m < 2^n - 1$ are isomorphic to B_m .

1 Preliminaries Define the relation \equiv^n between models of the same finite vocabulary (not containing function-symbols) using induction on n by

- (1) $A \equiv^0 B$ iff A and B have the same true atomic sentences
- (2) $A \equiv^{n+1} B$ iff both
 - (i) $\forall a \in A \exists b \in B(A, a) \equiv^{n} (B, b)$
 - (ii) $\forall b \in B \exists a \in A(A, a) \equiv^n (B, b).$

Also, when $\underline{a} \in A^k$, define the first-order (!) formula $\sigma_{\underline{a}}^n(x_0, \ldots, x_{k-1})$ of quantifier rank *n* by

(1') $\sigma_{\underline{a}}^{0}$ is the conjunction of all formulas with at most x_{0}, \ldots, x_{k-1} free satisfied by \underline{a} in A which are either atomic or negated atomic

(2')
$$\sigma_{\underline{a}}^{n+1}$$
 is $\forall x_k \bigvee_{b \in A} \sigma_{\underline{a}^{\wedge}\langle b \rangle}^n \land \bigwedge_{b \in A} \exists x_k \sigma_{\underline{a}^{\wedge}\langle b \rangle}^n$

For a definition of the Ehrenfeucht-game and a proof of the next lemma (be it in the context of linear orderings) I refer to [1], pp. 93–96, 247–252 and 359–361.

^{*}I thank Piet Rodenburg for communicating his question (answered by 2.5 below) on which this note is a digression, and Prof. Specker for a lecture featuring Ehrenfeucht-games.