Notre Dame Journal of Formal Logic Volume 27, Number 4, October 1986

Kripke-Type Semantics for Da Costa's Paraconsistent Logic C_{ω}

MATTHIAS BAAZ

This paper should be considered as an example of the formal derivation of semantics in connection with propositional logics extending positive logic. These constructions can be applied to many similar problems and should be compared to those proposed in Hacking [4]: The Kripke-type structure of the resulting semantics depends on the previous choice of Gentzen-style formulations. The details of the semantics are read off from the adopted introduction and elimination rules.

In Arruda [1], p. 27, problem 8, the problem is formulated to adapt world semantics to C_{ω} . The proposed construction of an adequate semantics for C_{ω} is based on Raggio's Gentzen-type formulation CG_{ω} of C_{ω}^* [5], and on the proof-theoretic analysis of intuitionistic logic in Takeuti [6], Section 8.

1 Definition of C_{ω} and CGP_{ω} Define C_{ω} as usual

(1) $A \supset (B \supset A)$ (2) $(A \supset B) \supset ((A \supset (B \supset C)) \supset (A \supset C))$ (3) $\frac{A \land A \supset B}{B}$ (4) $A \land B \supset C$ (5) $A \land B \supset B$ (6) $A \supset (B \supset A \land B)$ (7) $A \supset A \lor B$ (8) $B \supset A \lor B$ (9) $(A \supset C) \supset ((B \supset C) \supset (A \lor B \supset C))$ (10) $A \lor \neg A$ (11) $\neg \neg A \supset A$.

(Cf. Da Costa [2] or Arruda [1].) Let CGP_{ω} be the restriction of CG_{ω} to propositional syntax: CGP_{ω} corresponds to the propositional part of Gentzen's system LK with

Received July 2, 1984; revised June 18, 1985