On An Implication Connective of RM

ARNON AVRON

Introduction The Dunn-McCall system RM was developed and studied by the "Entailment" school (mainly by Meyer and Dunn), but it can hardly be called "relevance logic" because of theorems like $\sim (A \rightarrow A) \rightarrow (B \rightarrow B)$ and $(A \rightarrow B) \vee (B \rightarrow A)$ (see [1], 29.5); yet it is a strong and decidable logic which still avoids $A \rightarrow (B \rightarrow A)$ and $\sim A \rightarrow (A \rightarrow B)$.

Some new light on RM is shed here (so we hope) by investigating an implication connective \supset definable in it by $(A \rightarrow B) \lor B$. " \supset " has most of the properties one might expect an implication to have in a paraconsistent logic¹: respecting M.P., the "official" deduction theorem, and a strong version of the Craig interpolation theorem: $RM \vdash A \supset B$ iff either $RM \vdash B$, or there is an interpolant C for A and B. (In classical logic there is also the possibility that $\vdash \sim A$.) These facts are all proved in Section 1.

In Section 2 we investigate RM as a system in the $\{\sim, \lor, \land \supset\}$ language. We give a simple axiomatization of its $\{\sim \supset\}$ fragment, which suffices for characterizing the Sugihara matrix.² In this fragment \rightarrow is definable (so the Sobociński logic³ is a proper subsystem of it), but \lor is not. We get the full system RM by adjoining some natural axioms concerning $A \lor B$ and $\sim (A \lor B)$ to its $\{\sim \supset\}$ fragment. In contrast to extending with \lor the $\{\sim \rightarrow\}$ fragment, this extension causes no essential changes.

From the simple classical laws concerning combinations of \sim with \supset , \lor , and \land , *RM* only lacks $\sim (A \supset B) \supset A$ and $\sim A \supset (A \supset B)$. By adding, in Section 3, the first schema to *RM*, we get a three-valued logic equivalent to what was called *RM*₃ in [1]. This system might be considered an optimal paraconsistent logic, since its positive fragment (in the $\{\supset, \land, \lor\}$ language) is identical with the classical one. It avoids $\sim A \supset (A \supset B)$, but every proper extension of it (closed under substitutions) is equivalent to *PC*.

Preliminaries The system RM is obtained from the system R by adding to it the mingle axiom $A \rightarrow (A \rightarrow A)$. We assume the reader is acquainted with this system and its properties, as described in [1], 29.3-4.

Received January 7, 1985