Notre Dame Journal of Formal Logic Volume 27, Number 2, April 1986

On Purely Relevant Logics

ARNON AVRON

1 Introduction The system RMI_{\Rightarrow} (which consists of the implication-negation axioms of RM) was investigated in [3] and shown there to be an optimal relevance logic in its language. We note there, however, that one cannot add to it an *R*-style extensional conjunction \land , with $A \land B \rightarrow A$, $A \land B \rightarrow B$ as axioms and the adjunction rule of inference $(A, B \vdash A \land B)$, without losing its relevance character (see [1], 29.5, and [3], III.8).

This state of affairs is not altogether surprising. Anderson and Belnap faced a similar problem when they came to add to R_{\Rightarrow} (or E_{\Rightarrow}) extensional connectives. In R_{\Rightarrow} , e.g., the meaning of \rightarrow is given by the "relevant deduction theorem", according to which a sentence of the form $A_1 \rightarrow (A_2 \rightarrow ... \rightarrow (A_n \rightarrow B)...)$ is provable in R_{\Rightarrow} iff there is a proof in R_{\Rightarrow} of B from the assumptions A_1, \ldots, A_n which uses all the A_i 's. (Here the meaning of "proof" is the usual one, while the meaning of "use" is to be understood according to the relevantist's analysis of this term (see [1], Chapter 1).) Accordingly, if one wishes to add to R_{\Rightarrow} an extensional conjunction such that $A \wedge B \vdash A$, $A \wedge B \vdash B$ and $A, B \vdash A \wedge B$ are all valid modes of inference, then he must recognize $A \wedge B \rightarrow$ $A, A \wedge B \rightarrow B$ and $A \rightarrow (B \rightarrow A \wedge B)$ as valid sentences. However, it is well known that by adding these schemes to R_{\Rightarrow} we get classical logic.

Anderson and Belnap's first step in order to solve this difficulty was to give up $A \rightarrow (B \rightarrow A \land B)$ as a valid sentence and to introduce instead adjunction as a new, primitive rule of inference (besides M.P. for \rightarrow). A second, unavoidable step was to propose some new concepts of "proof" relative to which some version of the deduction theorem does hold. (In [1] and [5] three competing definitions can be found of what a "proof" in R or E is.¹ This is an obvious evidence that the relevantists have no clear intuition at this point.) These concepts of proofs all seem ad hoc and entail many absurdities. Consider an example: $A \land (B \rightarrow B)$ can be inferred, according to them, if we assume both A and $B \rightarrow$ B but not if we assume A alone, although $B \rightarrow B$ is a logical truth of the system and so it would be ridicuous to pretend assuming it.

Received December 17, 1984

180