Notre Dame Journal of Formal Logic Volume 31, Number 2, Spring 1990

Post's Functional Completeness Theorem

FRANCIS JEFFRY PELLETIER and NORMAN M. MARTIN*

Abstract The paper provides a new proof, in a style accessible to modern logicians and teachers of elementary logic, of Post's Functional Completeness Theorem. Post's Theorem states the necessary and sufficient conditions for an arbitrary set of (2-valued) truth functional connectives to be expressively complete, that is, to be able to express every (2-valued) truth function or truth table. The theorem is stated in terms of five properties that an arbitrary connective may have, and claims that a set of connectives is expressively complete iff for each of the five properties there is a connective that lacks that property.

Everyone knows the technique whereby, given an arbitrary (2-valued) truth table, one can construct a conjunctive (or disjunctive) normal form formula (using only connectives from $\{\vee, \wedge, \sim\}$ which has exactly that truth table. This proves that the set of connectives $\{\vee, \wedge, \sim\}$ is functionally complete: any (2valued) truth table can be constructed from them. Everyone also knows the definitions of \wedge in terms of $\{\vee, \sim\}$ and of \vee in terms of $\{\wedge, \sim\}$. This shows that $\{\wedge, \sim\}$ and $\{v, \sim\}$ are also functionally complete sets of connectives. Everyone also knows that the sheffer stroke functions, \uparrow and \downarrow , are each functionally complete. Most everyone knows that $\{\rightarrow, \mathbf{F}\}$ is functionally complete and that $\{\rightarrow, \lor\}$ is functionally complete (**F** is the constant-false truth function, \lor is "exclusive or"). Some people, having worked through Church ([1], p. 131f.), even know that {[],**T**,**F**} is functionally complete ([] is the ternary connective of "conditional disjunction": [p,q,r] means "if q, then p else r"). However, what is not generally known is why these things are so. What is it about these particular sets of connectives that makes them functionally complete while (say) $\{\leftrightarrow, \sim\}$ is not functionally complete?

^{*}Thanks are due to Errol Martin, Graham Priest, and an anonymous referee for discussions and help with some of the proofs.