Notre Dame Journal of Formal Logic Volume 31, Number 3, Summer 1990

Varying Modal Theories

TH. LUCAS and R. LAVENDHOMME

Abstract The notion of modal theory is extended by accepting the idea that axioms and language itself vary over a plurality of possible worlds. Inference rules involving different worlds are introduced and completeness is proved by using a notion of 'ugly diagram', which is a graphical means of detecting when a family of modal theories has no model.

Models of modal theories are indexed by a plurality of possible worlds equipped with a binary accessibility relation. It seems natural to extend the notion of modal theory by accepting that axioms, and even language itself, vary over a similar structure.

Here is an argument which supports our point of view, as opposed to already existing work on modal model theory (e.g. [1]). Consider a language L for a modal theory in the usual sense (L is constant). Consider a modal structure M: it varies with the elements of a set I. We may define the "theory of M" as the set of sentences satisfied in the "actual world", but we could as well consider for each $i \in I$ the set T_i of sentences satisfied by M_i in L. A further step consists in the adjunction for each $i \in I$ of constants \underline{a}_i for $a_i \in M(i)$, giving rise to languages $L_i = L \cup {\underline{a}_i | a_i \in M(i)}$ varying over the set I of indices.

The aim of this paper is to answer the following preliminary question: when is a family of usual modal theories the theory (in our sense) of a model?

To be specific, we will deal with the system K in the main body of the text but discuss in the last section the extension to other systems.

In the first section, we propose a notion of (K-) theory $(T_i)_{i \in I}$ varying over a structure $\langle I, R \rangle$. Structures and models for these theories are essentially the usual ones (see e.g. [3]), but we note that models validate rules of deduction involving different indices. To take a simple example: if a sentence $\Box \varphi$ is satisfied in *i* and if *iRj*, then φ is satisfied in *j*.

In the second section we describe a notion of consistency. It is clearly necessary but not sufficient to say that for each $i \in I$, T_i is K-consistent; if T_i proves $\Box \varphi$ in K, if iRj and T_i proves $\neg \varphi$ in K, then $T = (T_i)_{i \in I}$ has no model. It is

Received January 7, 1988; revised March 29, 1989