The Dual Cantor–Bernstein Theorem and the Partition Principle

BERNHARD BANASCHEWSKI and GREGORY H. MOORE

Abstract This paper examines two propositions, the Dual Cantor-Bernstein Theorem and the Partition Principle, with respect to their logical interrelationship and their history. It is shown that the Refined Dual Cantor-Bernstein Theorem is equivalent to the Axiom of Choice.

1 Introduction We first recall some standard notation. If $x \le y$ means that there is an injection $f: x \to y$, the dual relation $x \le y$ is taken to mean that, if x is nonempty, there is a surjection $g: y \to x$. Analogously, x < y means that $x \le y$ and not $y \le x$, while x < * y means that $x \le y$ and not $y \le x$. Letting $x \approx y$ mean that there is a bijection $f: x \to y$, we can express the Cantor-Bernstein Theorem as the proposition that if $x \le y$ and $y \le x$, then $x \approx y$. Likewise, the Dual Cantor-Bernstein Theorem (CB^{*}) states that if $x \le y$ and $y \le * x$, then $x \approx y$. The Partition Principle (PP) connects \le and $\le *$ by stating that $x \le * y$ implies $x \le y$.

Neither the Dual Cantor-Bernstein Theorem nor the Partition Principle can be proved in Zermelo-Fraenkel set theory (ZF), but both are theorems if the Axiom of Choice (AC) is permitted. It is easily seen that CB* follows from PP in ZF, by means of the Cantor-Bernstein Theorem, and also that the converse of PP is a theorem of ZF. Now the Trichotomy of Cardinals (TC) states that, for all x and y, x < y or y < x or $x \approx y$. Likewise, the Dual Trichotomy of Cardinals (TC*) states that x <* y or y <* x or $x \approx y$. It turns out that TC is equivalent to AC (Hartogs [5]), and so is TC* (Lindenbaum and Tarski [9]; Sierpiński [18]).

It will be useful to introduce a certain refinement for each of CB^{*}, PP, AC, and TC. The \aleph_{α} -Dual Cantor-Bernstein Theorem (\aleph_{α} -CB^{*}) states that, for every x, if $x \leq * \aleph_{\alpha}$ and $\aleph_{\alpha} \leq * x$, then $x \approx \aleph_{\alpha}$. Analogously, the \aleph_{α} -Partition Principle (\aleph_{α} -PP) states that, for every x, if $\aleph_{\alpha} \leq * x$, then $\aleph_{\alpha} \leq x$. It is clear that, for each α , \aleph_{α} -PP implies \aleph_{α} -CB^{*}. In a similar vein, \aleph_{α} -AC states that if $x \approx \aleph_{\alpha}$, then there is a function f such that $f(y) \in y$ for every nonempty member y of

Received October 26, 1988; revised February 27, 1989