Notre Dame Journal of Formal Logic Volume 33, Number 3, Summer 1992

Generic Models of the Theory of Normal Z-rings

MARGARITA OTERO

Abstract A normal **Z**-ring M is a discretely ordered ring, integrally closed in its fraction field and such that for each positive integer n, $M/nM \simeq \mathbf{Z}/n\mathbf{Z}$ as rings. Here we study some properties of finite generic normal **Z**-rings. We give a uniform universal definition of N in them. And we separate existentially closed normal **Z**-rings via generics.

1 Introduction and preliminaries Let \mathcal{L} denote the first order language of ordered rings based on the symbols $0, 1, +, -, \cdot, <$. The theory of normal Z-rings (NZR) consists of the following axioms:

- (i) OR: the theory of ordered rings;
- (ii) D: $\forall x \neg (0 < x < 1)$ (the discreteness of the order);
- (iii) N: for each $n \in \mathbb{N}$

$$\forall z_1, \ldots, z_n x y (x, y \neq 0 \land x^n + z_1 x^{n-1} y + \cdots + z_n y^n = 0 \rightarrow \exists w (x = wy))$$

and the **Z**-ring axioms:

(iv) Z: for each
$$n \in \mathbb{N}$$
, $n \neq 0 \ \forall x \forall yz (x = ny + z \land 0 \le z < n)$.

The theory of normal Z-rings plays a relevant role in the study of the fragment of arithmetic Normal Open Induction (NOI). NOI is the V3-theory in the language $\mathcal L$ which consists of NZR together with

$$\forall \mathbf{x}((\theta(\mathbf{x},0) \land \forall y \ge 0(\theta(\mathbf{x},y) \rightarrow \theta(\mathbf{x},y+1)) \rightarrow \forall y \ge 0\theta(\mathbf{x},y))$$

for every quantifier-free \mathcal{L} -formula $\theta(\mathbf{x}, y)$ (\mathbf{x} denotes an *n*-tuple (x_1, \dots, x_n)).

In [7] Shepherdson gave the following useful characterization of models of NOI:

Let M be a normal discretely ordered ring. Then M is a model of NOI if and only if for every element α of the real closure of the fraction field of M there is an element a in M such that $|a - \alpha| < 1$.

From this several corollaries are deduced. Let us mention some of them. Let M be a model of NOI. Then every quantifier-free definable set in M is a finite

Received February 5, 1992; revised April 20, 1992