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LETTER TO THE EDITOR

Dear Editor,
On the covariances of outdegrees in random plane recursive trees

In 2005 Janson [3], extending the earlier work of Mahmoud et al. [4], established the joint
asymptotic normality of the outdegrees of a random plane recursive tree (we refer to [3] for
references, discussion, and statements, and to [2] for a much wider context). In particular, he
gave the following formula for the entries of the limiting covariance matrix [3, Theorem 1.3]:
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Since this formula is not very convenient to work with (in particular the behavior of 6;; as i
and/or j grow to oo is not immediately clear), we found it worthwhile to point out that it may
be simplified considerably. Throughout, (x),, = x(x — 1) ... (x — (m — 1)) denotes the falling
factorial.

Proposition 1. For all integersi > 0, j > 0, we have
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For the proof we will need two identities involving binomial coefficients that we present in the
following two lemmas.
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Lemma 1. For all integers k>0,a>0,and j >k,

Z( 1)1(><k+l+a)_ 0 ifj >k,
Pt l+a ) (=1 ifj=k.

Proof. This is a special case of equation (5.24) in [1] as we have found thanks to the
encouragement by one of the referees to search for a source in the literature. It corresponds to
m = 0 and s = n + a in the notation used in [1]. However, to keep this letter self-contained we
supply a short proof. We proceed by induction over k for all a and j > k. If k = O the equality
holds for all @ > 0 since its left-hand side is (1 — 1)/ if j > 0 and 1 if j = 0. Assume that it
holds for nonnegative integers up to k and all values of @ and j > k. Let a > 0 be any integer.
Forj > k+1,
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