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LETTER TO THE EDITOR

Dear Editor,
On the covariances of outdegrees in random plane recursive trees

In 2005 Janson [3], extending the earlier work of Mahmoud et al. [4], established the joint
asymptotic normality of the outdegrees of a random plane recursive tree (we refer to [3] for
references, discussion, and statements, and to [2] for a much wider context). In particular, he
gave the following formula for the entries of the limiting covariance matrix [3, Theorem 1.3]:

σ̃ij = 2
i∑

k=0

j∑
l=0

(−1)k+l

k + l + 4

(
i

k

)(
j

l

)(
2(k + l + 4)!

(k + 3)!(l + 3)! − 1 − (k + 1)(l + 1)

(k + 3)(l + 3)

)
. (1)

Since this formula is not very convenient to work with (in particular the behavior of σ̃ij as i

and/or j grow to ∞ is not immediately clear), we found it worthwhile to point out that it may
be simplified considerably. Throughout, (x)m = x(x − 1) . . . (x − (m− 1)) denotes the falling
factorial.

Proposition 1. For all integers i ≥ 0, j ≥ 0, we have
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For the proof we will need two identities involving binomial coefficients that we present in the
following two lemmas.

Lemma 1. For all integers k ≥ 0, a ≥ 0, and j ≥ k,
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Proof. This is a special case of equation (5.24) in [1] as we have found thanks to the
encouragement by one of the referees to search for a source in the literature. It corresponds to
m = 0 and s = n+ a in the notation used in [1]. However, to keep this letter self-contained we
supply a short proof. We proceed by induction over k for all a and j ≥ k. If k = 0 the equality
holds for all a ≥ 0 since its left-hand side is (1 − 1)j if j > 0 and 1 if j = 0. Assume that it
holds for nonnegative integers up to k and all values of a and j ≥ k. Let a ≥ 0 be any integer.
For j ≥ k + 1,
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