LETTER TO THE EDITOR

Dear Editor,

On the covariances of outdegrees in random plane recursive trees

In 2005 Janson [3], extending the earlier work of Mahmoud et al. [4], established the joint asymptotic normality of the outdegrees of a random plane recursive tree (we refer to [3] for references, discussion, and statements, and to [2] for a much wider context). In particular, he gave the following formula for the entries of the limiting covariance matrix [3, Theorem 1.3]:

$$
\begin{equation*}
\tilde{\sigma}_{i j}=2 \sum_{k=0}^{i} \sum_{l=0}^{j} \frac{(-1)^{k+l}}{k+l+4}\binom{i}{k}\binom{j}{l}\left(\frac{2(k+l+4)!}{(k+3)!(l+3)!}-1-\frac{(k+1)(l+1)}{(k+3)(l+3)}\right) \tag{1}
\end{equation*}
$$

Since this formula is not very convenient to work with (in particular the behavior of $\tilde{\sigma}_{i j}$ as i and/or j grow to ∞ is not immediately clear), we found it worthwhile to point out that it may be simplified considerably. Throughout, $(x)_{m}=x(x-1) \ldots(x-(m-1))$ denotes the falling factorial.

Proposition 1. For all integers $i \geq 0, j \geq 0$, we have

$$
\begin{aligned}
\tilde{\sigma}_{i j} & =\frac{16}{(i+3)_{3}(j+3)_{3}}-\frac{24}{(i+j+4)_{4}} \quad \text { if } i \neq j \\
\tilde{\sigma}_{j j} & =\frac{4}{(j+3)_{3}}+\frac{16}{(j+3)_{3}^{2}}-\frac{24}{(2 j+4)_{4}}
\end{aligned}
$$

For the proof we will need two identities involving binomial coefficients that we present in the following two lemmas.

Lemma 1. For all integers $k \geq 0, a \geq 0$, and $j \geq k$,

$$
\sum_{l=0}^{j}(-1)^{l}\binom{j}{l}\binom{k+l+a}{l+a}= \begin{cases}0 & \text { if } j>k \\ (-1)^{j} & \text { if } j=k\end{cases}
$$

Proof. This is a special case of equation (5.24) in [1] as we have found thanks to the encouragement by one of the referees to search for a source in the literature. It corresponds to $m=0$ and $s=n+a$ in the notation used in [1]. However, to keep this letter self-contained we supply a short proof. We proceed by induction over k for all a and $j \geq k$. If $k=0$ the equality holds for all $a \geq 0$ since its left-hand side is $(1-1)^{j}$ if $j>0$ and 1 if $j=0$. Assume that it holds for nonnegative integers up to k and all values of a and $j \geq k$. Let $a \geq 0$ be any integer. For $j \geq k+1$,

$$
\begin{aligned}
\sum_{l=0}^{j}(-1)^{l}\binom{j}{l}\binom{k+1+l+a}{l+a}= & \frac{k+1+a}{k+1} \sum_{l=0}^{j}(-1)^{l}\binom{j}{l}\binom{k+l+a}{l+a} \\
& +\sum_{l=0}^{j}(-1)^{l}\left(\frac{j!}{l!(j-l)!}\right)\left(\frac{l(k+l+a)!}{(k+1)!(l+a)!}\right)
\end{aligned}
$$

[^0]
[^0]: Received 14 July 2014; revision received 14 August 2014.

