DERIVATIONS OF A RESTRICTED WEYL TYPE ALGEBRA I

SEUL HEE CHOI AND KI-BONG NAM

ABSTRACT. Several authors find all the derivations of an algebra [1, 3, 6]. For two (non)associative algebras A_1 and A_2 ; if the additive group $\operatorname{Der}(A_1)$ of all the derivations of A_1 and the additive group $\operatorname{Der}(A_2)$ of all the derivations of A_2 are not isomorphic, then the two (non)associative algebras are nonisomorphic as algebras [5]. A Weyl type nonassociative algebra and its sub-algebra are defined in the papers [2, 3, 9]. We find all the derivations of the nonassociative algebra $\overline{WN_{0,0,0,1}}$ in this paper [4].

- 1. Introduction. Generally, there is an infinite dimensional simple algebra with an outer derivation. Thus, it is an interesting problem to find all the derivations of an infinite dimensional (non)associative algebra [2]. The Weyl type nonassociative algebras are defined in the papers [3, 11]. All the derivations of the restricted Weyl type nonassociative algebras $\overline{WN_{0,0,1}}$ and $\overline{WN_{0,0,2}}$ are found in the papers [1, 2]. In this paper, we find all the derivations of the restricted Weyl type nonassociative algebras $\overline{WN_{0,0,s_1}}$. We show that $\overline{Der}(\overline{WN_{0,0,s_1}})$ is (s^2+s) -dimensional. The nonassociative algebra $\overline{WN_{0,0,s_1}}$ contains the matrix ring $M_s(\mathbf{F})$, and we show that $\overline{Der}(M_s(\mathbf{F}))$ is s^2 -dimensional [2, 4].
- **2. Preliminaries.** Let **F** be a field of characteristic zero (not necessarily algebraically closed). Throughout this paper, **N** and **Z** will denote the nonnegative integers and the integers, respectively. Let $\mathbf{F}[x_1,\ldots,x_{m+s}]$ be the polynomial ring with the variables x_1,\ldots,x_{m+s} . Let g_1,\ldots,g_n be given polynomials in $\mathbf{F}[x_1,\ldots,x_{m+s}]$. For $n,m,s\in\mathbf{N}$, let us define the commutative, associative **F**-algebra $F_{g_n,m,s}=\mathbf{F}[e^{\pm g_1},\ldots,e^{\pm g_n},x_1^{\pm 1},\ldots,x_m^{\pm 1},x_{m+1},\ldots,x_{m+s}]$ in the formal power series ring $\mathbf{F}[[x_1,\ldots,x_{m+s}]]$ which is called a stable algebra

²⁰⁰⁰ AMS Mathematics subject classification. Primary 54B20, 54F15. Keywords and phrases. Simple, nonassociative algebra, right identity, annihila-

tor, idempotent, derivation.

Received by the editors on March 10, 2005, and in revised form on August 1, 2005.