TWO PARAMETERS FOR RAMANUJAN'S THETA-FUNCTIONS AND THEIR EXPLICIT VALUES

NAYANDEEP DEKA BARUAH AND NIPEN SAIKIA

ABSTRACT. We define two parameters $g_{k,n}$ and $g'_{k,n}$ involving Ramanujan's theta-functions $\psi(q)$ for any positive real numbers k and n. We study several properties of these parameters and find some explicit values of $\psi(q)$ and quotients of $\psi(q)$ and of $\phi(q)$. This work is a sequel to some recent works by J. Yi.

1. Introduction. For $q := e^{2\pi i z}$, Im (z) > 0, define $\psi(q)$ as

$$\psi(q) := \sum_{n=0}^{\infty} q^{n(n+1)/2} = 2^{-1} q^{-1/8} \vartheta_2(0, z),$$

where ϑ_2 is one of the classical theta-functions [15, page 464]. For $q:=e^{2\pi i \tilde{z}}$ and $\operatorname{Im}(z)>0$, we also define

$$\phi(q) := \sum_{n=-\infty}^{\infty} q^{n^2} = \vartheta_3(0, 2z)$$

and

$$f(-q) := (q;q)_{\infty} = q^{-1/24}\eta(z),$$

where ϑ_3 is another classical theta-function [15, page 464] and η denotes the Dedekind eta-function and $(a;q)_{\infty}$ is defined by

$$(a;q)_{\infty} := \prod_{k=0}^{\infty} (1 - aq^k).$$

²⁰⁰⁰ AMS Mathematics subject classification. Primary 33D90, 11F20. Keywords and phrases. Theta-functions, class-invariants. Research partially supported by grant SR/FTP/MA-02/2002 from DST, Govt.

Received by the editors on April 20, 2005, and in revised form on July 1, 2005.