REGULARITY OF POINTS IN THE SPECTRUM OF A C^* -ALGEBRA

M.H. SHAH

ABSTRACT. The relationship between different notions of regularity for the points in the spectrum of a C^* -algebra is investigated. Under certain conditions on the points of the spectrum, the Fell regularity implies Glimm regularity and vice versa. A localized version of the Fell-Dixmier theorem on continuous trace of a C^* -algebra is described.

1. Introduction. Let A be a C^* -algebra, and let \widehat{A} be the spectrum of A, the space of all (equivalence classes of) irreducible representations of A. In [4, 4.5.3(iii)] and [5, Remark to Theorem 6] two notions of regularity of points in the spectrum \widehat{A} are described. A point $\pi \in \widehat{A}$ is said to be Fell-regular (or a Fell-point) if there exists an $a \in A^+$ (the set of positive elements of A) and a neighborhood V of π such that $\sigma(a)$ is a rank-one projection for all $\sigma \in V$. On the other hand, a point $\pi \in \widehat{A}$ is said to be Glimm-regular if, whenever (e, U) is a pair such that $e \in A$ and $e \in A$ and $e \in A$ is a neighborhood of $e \in A$ and $e \in A$ are rank-one projection, then there exists a neighborhood $e \in A$ of $e \in A$ with $e \in A$ said to be a separated point of $e \in A$ if for each $e \in A$ and $e \in A$ there exist disjoint open sets $e \in A$ and $e \in A$ and

It is known [5, 6] that the notions agree if A is liminal with \widehat{A} Hausdorff. We investigate the relation between these notions for more general C^* -algebras. Of course, if $\pi \in \widehat{A}$ is Fell-regular, then, since $\pi(A)$ contains nonzero elements of the algebra of compact operators $K(H_{\pi})$, we have $\pi(A) \supseteq K(H_{\pi})$ [4, 4.1.10]. On the other hand, if $\pi(A) \cap K(H_{\pi}) = \{0\}$, then, although π cannot be Fell-regular, it is automatically Glimm-regular (by vacuous satisfaction). However, we prove that, if $\pi \in \widehat{A}$ is a separated point, then π is Fell-regular if and only if $\pi(A) \supseteq K(H_{\pi})$ and π is Glimm-regular. We give examples to show that if π is not a separated point then (even if $\pi(A)$ contains the

²⁰⁰⁰ AMS Mathematics subject classification. Primary 46L05, 46L30. Received by the editors on February 8, 2005, and in revised form on May 17, 2005.