CROSSED PRODUCTS OF LOCALLY C^* -ALGEBRAS ## MARIA JOIŢA ABSTRACT. The crossed products of locally C^* -algebras are defined and a Takai duality theorem for inverse limit actions of a locally compact group on a locally C^* -algebra is proved. 1. Introduction. Locally C^* -algebras are generalizations of C^* -algebras. Instead of being given by a single C^* -norm, the topology on a locally C^* -algebra is defined by a directed family of C^* -seminorms. In [9], Phillips defines the notion of action of a locally compact group G on a locally C^* -algebra A whose topology is determined by a countable family of C^* -seminorms, and also defines the crossed product of A by an inverse limit action $$\alpha = \lim_{\stackrel{\leftarrow}{n}} \alpha^{(n)}$$ as being the inverse limit of crossed products of A_n by $\alpha^{(n)}$. In this paper, by analogy with the case of C^* -algebras, we define the concept of crossed product, respectively reduced crossed product of locally C^* -algebras. The Takai duality theorem says that if α is a continuous action of an Abelian locally compact group G on a C^* -algebra A, then we can recover the system (G,A,α) up to stable isomorphism from the double dual system in which $G=\widehat{\widehat{G}}$ acts on the crossed product $(A\times_{\alpha}G)\times_{\widehat{\alpha}}\widehat{G}$ by the dual action of the dual group. In [3], Imai and Takai prove a duality theorem for C^* -crossed products by a locally compact group that generalizes the Takai duality theorem [12]. For a given C^* -dynamical system (G,A,α) , they construct a "dual" C^* -crossed product of the reduced crossed product $A\times_{\alpha,r}G$ by an isomorphism ²⁰⁰⁰ AMS Mathematics subject classification. Primary 46L05, 46L55. This research was partially supported by grant CEEX-code PR-D11-PT00-48/2005 from The Romanian Ministry of Education and Research and by grant CNCSIS (Romanian National Council for Research in High Education)-code A ^{1065/2006.}Received by the editors on November 18, 2004, and in revised form on May 19, 2005.