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ABSTRACT. We prove several results on curves f : [0,1] —
X, where X is an arbitrary real Banach space. They general-
ize theorems which were proved by Zahorski, Tolstov, Choquet
and Bari in the case X = R"™. First we give a complete charac-
terization of those f that admit an equivalent parametrization
which has a continuous derivative (respectively with continu-
ous derivative which is non-zero everywhere or almost every-
where). Further we establish theorems characterizing curves
allowing boundedly or finitely differentiable parametrizations
(with almost everywhere nonzero derivative). As a tool, we
prove versions of the aforementioned theorems for metric ana-
logues of derivatives. Finally, we discuss the case of curves al-
lowing almost everywhere differentiable parametrizations. We
also answer several questions posed by Bruckner.

1. Introduction. We prove several results on curves f : [0,1] — X,
where X is an arbitrary real Banach space. Our results give a complete
characterization of several situations when there exists an equivalent
parametrization of a curve possessing various differentiability proper-
ties. They generalize theorems which were known (to our knowledge)
for the case X = R” only. For some proofs we need, besides the known
methods used in the case X = R™ and results on metric differentia-
bility of Lipschitz (and pointwise-Lipschitz) mappings (from [10, 14]),
also some new ideas.

Our result on C'-parametrizations (Theorem 3.1) generalizes a the-
orem of Tolstov [17] for curves with values in the Euclidean space
R". Note that in [17], only curves, which are non-constant on any
interval, are considered, and that the result for real functions (possibly
constant on an interval) was proved independently by Bruckner and
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