ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 37, Number 4, 2007

OSCILLATION THEOREMS RELATED TO AVERAGING TECHNIQUE FOR DAMPED PDE WITH *p*-LAPLACIAN

ZHITING XU

ABSTRACT. We present some oscillation theorems related to integral averaging technique for damped PDEs with $p\mbox{-}$ Laplacian

(E)
$$\sum_{i, j=1}^{N} D_i[a_{ij}(x) ||Dy||^{p-2} D_j y] + \langle b(x), ||Dy||^{p-2} Dy \rangle + c(x) f(y) = 0.$$

The results obtained extend the criteria for the Sturm-Liouville linear equation due to Kamenev, Kong, Philos and Wong to equation (E).

1. Introduction. We consider the second order damped partial differential equation (PDE) with *p*-Laplacian

(1.1)
$$\sum_{i,j=1}^{N} D_i[a_{ij}(x) \| Dy \|^{p-2} D_j y] + \langle b(x), \| Dy \|^{p-2} Dy \rangle + c(x) f(y) = 0$$

in an exterior domain $\Omega(r_0) := \{x \in \mathbf{R}^N : ||x|| \ge r_0\}$, where $r_0 > 0$, $x = (x_i)_{i=1}^N \in \mathbf{R}^N$, $N \ge 2$, p > 1, $D_i y = \partial y / \partial x_i$, $Dy = (D_i y)_{i=1}^N$, $\|\cdot\|$ and $\langle \cdot, \cdot \rangle$ denote the usual Euclidean norm and the usual scalar product in \mathbf{R}^N , respectively.

Throughout this paper, we assume that the following conditions hold.

(A1) $A = (a_{ij}(x))_{N \times N}$ is a real symmetric positive define matrix function with $a_{ij} \in C^{1+\mu}_{\text{loc}}(\Omega(r_0), \mathbf{R}), \ 0 < \mu < 1.$

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 34C10, 35B05, 35J60. Key words and phrases. Oscillation, PDE with p-Laplacian, damped, Riccati inequality, integral averaging technique.

Received by the editors on Nov. 26, 2004, and in revised form on April 15, 2005.