A PARTICULAR TEST ELEMENT OF A FREE SOLVABLE LIE ALGEBRA OF RANK TWO

AHMET TEMIZYÜREK AND NAIME EKICI

Abstract

We prove that a free solvable Lie algebra of solvability class 3 generated by two elements has test rank 1 by giving a particular test element.

1. Introduction. Let F be an n-generator Lie algebra. A set of elements $g_{1}, g_{2}, \ldots, g_{r}, r \leq n$, is a test set if for every endomorphism φ of F the conditions $\varphi\left(g_{i}\right)=g_{i}$ for $i=1,2, \ldots, r$ imply that φ is an automorphism. The test rank of F is minimal cardinality of a test set. A test element is a test set consisting of one element. Well known examples of test elements for free groups were described by Nielsen [8] and Turner $[\mathbf{1 1}]$. Mikhalev and Yu in [6] described an algorithm to determine test elements of free algebras of rank two.

Recently, Chirkov and Shevelin [1] and Esmerligil and Ekici [4] have independently shown that all nontrivial elements of a commutant of a free metabelian Lie algebra of rank 2 are test elements. They have further proved that the test rank of a free metabelian Lie algebra of rank n is equal to $n-1$. In the case of free solvable Lie algebras the situation is different from the metabelian case. Roman'kov [9] showed that a free solvable group of rank 2 and class 3 has test rank 1 , and he constructed a test element for such groups.

The purpose of this article is to construct a test element for free solvable Lie algebras of rank 2 and solvability class 3 .
2. Preliminaries and notations. Let F be a free Lie algebra over a field K with free generating set $\{x, y\}$. By $\delta^{i} F$ we denote the i th term of the derived series of F. We fix the notation $L=F / \delta^{3} F$ for the free solvable Lie algebra generated by the set $\{\bar{x}, \bar{y}\}$ of solvability class 3 , where $\bar{x}=x+\delta^{3} F, \bar{y}=y+\delta^{3} F$. Let $\widetilde{x}, \widetilde{y}$ denote the cosets $\widetilde{x}=x+\delta^{2} F$ and $\widetilde{y}=y+\delta^{2} F$. We know from $[\mathbf{2}, \mathbf{3}]$ that the universal

[^0]
[^0]: Received by the editors on Nov. 9, 2004, and in revised form on Feb. 17, 2005.

