SOME EXTENSIONS OF THE MARKOV INEQUALITY FOR POLYNOMIALS

D. DRYANOV, R. FOURNIER AND S. RUSCHEWEYH

Abstract

Let \mathbf{D} denote the unit disc of the complex plane and \mathcal{P}_{n} the class of polynomials of degree at most n with complex coefficients. We prove that $\max _{z \in \partial \mathbf{D}}\left|\frac{p_{k}(z)-p_{k}(\bar{z})}{z-\bar{z}}\right| \leq n^{1+k} \max _{0 \leq j \leq n}\left|\frac{p\left(e^{i j \pi / n}\right)+p\left(e^{-i j \pi / n}\right)}{2}\right|$, where $p_{0}:=p$ belongs to \mathcal{P}_{n} and for $k \geq 0, p_{k+1}(z):=z p_{k}^{\prime}(z)$. We also obtain a new proof of a well-known inequality of Duffin and Schaeffer and sharpenings of some other classical inequalities.

Introduction. Let \mathcal{P}_{n} be the class of polynomials

$$
p(z)=\sum_{k=0}^{n} a_{k}(p) z^{k}
$$

of degree at most n with complex coefficients. We define, together with $\mathbf{D}:=\{z| | z \mid<1\}$,

$$
\|p\|_{\mathbf{D}}:=\max _{z \in \partial \mathbf{D}}|p(z)| \quad \text { and } \quad\|p\|_{[-1,1]}:=\max _{-1 \leq x \leq 1}|p(x)|
$$

The famous inequalities of, respectively, Bernstein and Markov state that for any $p \in \mathcal{P}_{n}$,

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{\mathbf{D}} \leq n\|p\|_{\mathbf{D}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{[-1,1]} \leq n^{2}\|p\|_{[-1,1]} \tag{2}
\end{equation*}
$$

The second author acknowledges support of NATEQ (Québec). The third author acknowledges partial support from the German-Israeli Foundation (grant G-809$234.6 / 2003$), from FONDECYT (grants 1040366 and 7040069) and from DGIPUTFSM (grant 240104).

Received by the editors on Dec. 6, 2004, and in revised form on April 6, 2005.

