INTEGRAL CLOSURES, LOCAL COHOMOLOGY AND IDEAL TOPOLOGIES

R. NAGHIPOUR

Abstract

Let (R, \mathfrak{m}) be a formally equidimensional local ring of dimension d. Suppose that Φ is a system of nonzero ideals of R such that, for all minimal prime ideals \mathfrak{p} of $R, \mathfrak{a}+\mathfrak{p}$ is \mathfrak{m}-primary for every $\mathfrak{a} \in \Phi$. In this paper, the main result asserts that for any ideal \mathfrak{b} of R, the integral closure $\mathfrak{b}^{*\left(H_{\Phi}^{d}(R)\right)}$ of \mathfrak{b} with respect to the Artinian R-module $H_{\Phi}^{d}(R)$ is equal to \mathfrak{b}_{a}, the classical Northcott-Rees integral closure of \mathfrak{b}. This generalizes the main result of $[\mathbf{1 3}]$ concerning the question raised by D. Rees.

1. Introduction. Let R denote a commutative Noetherian ring (with identity) of dimension d, and let A be an Artinian R-module. We say that the ideal \mathfrak{a} of R is a reduction of the ideal \mathfrak{b} of R with respect to A if $\mathfrak{a} \subseteq \mathfrak{b}$ and there exists an integer $s \geq 1$ such that $\left(0:_{A} \mathfrak{a b}^{s}\right)=\left(0:_{A} \mathfrak{b}^{s+1}\right)$. An element x of R is said to be integrally dependent on \mathfrak{a} with respect to A if \mathfrak{a} is a reduction of $\mathfrak{a}+R x$ with respect to A, see [12]. Moreover, the set $\mathfrak{a}^{*(A)}:=\{x \in R \mid x$ is integrally dependent on \mathfrak{a} with respect to $A\}$ is an ideal of R, called the integral closure of \mathfrak{a} with respect to A.
In [13] the dual concepts of reduction and integral closure of the ideal \mathfrak{b} with respect to a Noetherian R-module N were introduced; we shall use $\mathfrak{b}_{a}^{(N)}$ to denote the integral closure of \mathfrak{b} with respect to N. If $N=R$, then $\mathfrak{b}_{a}^{(N)}$ reduces to that the usual Northcott-Rees integral closure \mathfrak{b}_{a} of \mathfrak{b}.

The purpose of the present paper is to show that, for any system of ideals Φ of a formally equidimensional local ring (R, \mathfrak{m}) of dimension d, if $\operatorname{Rad}(\mathfrak{a}+\mathfrak{p})=\mathfrak{m}$ for all minimal primes \mathfrak{p} of R and for every $\mathfrak{a} \in \Phi$, then $\mathfrak{b}^{*\left(H_{\Phi}^{d}(R)\right)}$, the integral closure of \mathfrak{b} with respect to $H_{\Phi}^{d}(R)$, is equal

[^0]
[^0]: 2000 AMS Mathematics Subject Classification. Primary 13D45, 13B20, 13 E 05.
 Key words and phrases. Integral closures, local cohomology, formally equidimensional rings.

 This research was been in part supported by a grant from IPM (No. 81130020).
 Received by the editors on May 25, 2004, and in revised form on Feb. 5, 2005.

