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OPERATOR ALGEBRAS AND
MAULDIN-WILLIAMS GRAPHS

MARIUS IONESCU

ABSTRACT. We describe a method for associating a C∗-
correspondence to a Mauldin-Williams graph and show that
the Cuntz-Pimsner algebra of this C∗-correspondence is iso-
morphic to the C∗-algebra of the underlying graph. In addi-
tion, we analyze certain ideals of these C∗-algebras.

We also investigate Mauldin-Williams graphs and fractal
C∗-algebras in the context of the Rieffel metric. This gener-
alizes the work of Pinzari, Watatani and Yonetani. Our main
result here is a “no go” theorem showing that such algebras
must come from the commutative setting.

1. Introduction. In recent years many classes of C∗-algebras
have been shown to fit into the Pimsner construction of what are
known now as Cuntz-Pimsner algebras, see [20, 22]. This construction
is based on a so-called C∗-correspondence over a C∗-algebra. For
example, a natural C∗-correspondence can be associated with a graph
G, see [10], [11, Example 1.5]. The Cuntz-Pimsner algebra of this C∗-
correspondence is isomorphic to the graph C∗-algebra C∗(G) as defined
in [16]. Another example is the C∗-correspondence associated with a
local homeomorphism on a compact metric space studied by Deaconu in
[6], and the C∗-correspondence associated with a local homeomorphism
on a locally compact space studied by Deaconu, Kumjian, and Muhly
in [7]. They showed that the Cuntz-Pimsner algebra is isomorphic to
the groupoid C∗-algebra associated with a local homeomorphism in
[5, 7, 26].

By a (directed) graph we mean a system G = (V,E, r, s) where V
and E are finite sets, called the sets of vertices and edges, respectively,
of the graph, and where r and s are maps from E to V , called the
range and source maps, respectively. Thus, s(e) is the source of an
edge e and r(e) is its range. A Mauldin-Williams graph is a graph
G together with a collection of compact metric spaces, one for each
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