OPERATOR ALGEBRAS AND MAULDIN-WILLIAMS GRAPHS

MARIUS IONESCU

Abstract

We describe a method for associating a C^{*} correspondence to a Mauldin-Williams graph and show that the Cuntz-Pimsner algebra of this C^{*}-correspondence is isomorphic to the C^{*}-algebra of the underlying graph. In addition, we analyze certain ideals of these C^{*}-algebras. We also investigate Mauldin-Williams graphs and fractal C^{*}-algebras in the context of the Rieffel metric. This generalizes the work of Pinzari, Watatani and Yonetani. Our main result here is a "no go" theorem showing that such algebras must come from the commutative setting.

1. Introduction. In recent years many classes of C^{*}-algebras have been shown to fit into the Pimsner construction of what are known now as Cuntz-Pimsner algebras, see [20, 22]. This construction is based on a so-called C^{*}-correspondence over a C^{*}-algebra. For example, a natural C^{*}-correspondence can be associated with a graph G, see $[\mathbf{1 0}],\left[\mathbf{1 1}\right.$, Example 1.5]. The Cuntz-Pimsner algebra of this $C^{*}-$ correspondence is isomorphic to the graph C^{*}-algebra $C^{*}(G)$ as defined in [16]. Another example is the C^{*}-correspondence associated with a local homeomorphism on a compact metric space studied by Deaconu in [6], and the C^{*}-correspondence associated with a local homeomorphism on a locally compact space studied by Deaconu, Kumjian, and Muhly in $[\mathbf{7}]$. They showed that the Cuntz-Pimsner algebra is isomorphic to the groupoid C^{*}-algebra associated with a local homeomorphism in [5, 7, 26].

By a (directed) graph we mean a system $G=(V, E, r, s)$ where V and E are finite sets, called the sets of vertices and edges, respectively, of the graph, and where r and s are maps from E to V, called the range and source maps, respectively. Thus, $s(e)$ is the source of an edge e and $r(e)$ is its range. A Mauldin-Williams graph is a graph G together with a collection of compact metric spaces, one for each

[^0]
[^0]: AMS Mathematics subject classification. Primary 26A18, 37A55, 37B10, 37E25, 46L08, 46L55, 46L89.

 Received by the editors on Jan. 28, 2004, and in revised form on Nov. 29, 2004.

