REFINED ARITHMETIC, GEOMETRIC AND HARMONIC MEAN INEQUALITIES

PETER R. MERCER
Dedicated to Mari Mercer, in loving memory

Abstract

We obtain refinements of the arithmetic, geometric, and harmonic mean inequalities. A main ingredient is Hadamard's inequality. In an application, we obtain a refined version of Ky Fan's inequality.

1. Preliminaries. For $n \geq 2$, let $x_{1}, x_{2}, \ldots, x_{n}$ be positive numbers, and let $w_{1}, w_{2}, \ldots, w_{n}$ be positive weights: $\sum w_{j}=1$. We denote by

$$
A=\sum_{j=1}^{n} w_{j} x_{j}, \quad G=\prod_{j=1}^{n} x_{j}^{w_{j}}, \quad H=\left(\sum_{j=1}^{n} \frac{w_{j}}{x_{j}}\right)^{-1},
$$

the (weighted) arithmetic, geometric, and harmonic means of the x_{j} 's.
It is well known that

$$
H \leq G \leq A
$$

with the inequalities being strict unless all x_{j} 's are equal.
In this paper we obtain various refinements, including upper and lower bounds for $A-G, A-H, A / G$ and G / H. An important ingredient in our approach is the following.

Hadamard's inequality. Let f be a concave function on $[a, b]$. Then

$$
\frac{f(a)+f(b)}{2} \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq f\left(\frac{a+b}{2}\right)
$$

[^0] 2001.

[^0]: Received by the editors on July 25, 2000, and in revised form on August 15,

