ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 33, Number 4, Winter 2003

REFINED ARITHMETIC, GEOMETRIC AND HARMONIC MEAN INEQUALITIES

PETER R. MERCER

Dedicated to Mari Mercer, in loving memory

ABSTRACT. We obtain refinements of the arithmetic, geometric, and harmonic mean inequalities. A main ingredient is Hadamard's inequality. In an application, we obtain a refined version of Ky Fan's inequality.

1. Preliminaries. For $n \ge 2$, let x_1, x_2, \ldots, x_n be positive numbers, and let w_1, w_2, \ldots, w_n be positive weights: $\sum w_j = 1$. We denote by

$$A = \sum_{j=1}^{n} w_j x_j, \quad G = \prod_{j=1}^{n} x_j^{w_j}, \quad H = \left(\sum_{j=1}^{n} \frac{w_j}{x_j}\right)^{-1},$$

the (weighted) arithmetic, geometric, and harmonic means of the x_j 's.

It is well known that

$$H \leq G \leq A$$
,

with the inequalities being strict unless all x_j 's are equal.

In this paper we obtain various refinements, including upper and lower bounds for A-G, A-H, A/G and G/H. An important ingredient in our approach is the following.

Hadamard's inequality. Let f be a concave function on [a, b]. Then

$$\frac{f(a)+f(b)}{2} \le \frac{1}{b-a} \int_a^b f(t) \, dt \le f\left(\frac{a+b}{2}\right).$$

Received by the editors on July 25, 2000, and in revised form on August 15, 2001.

Copyright ©2003 Rocky Mountain Mathematics Consortium