ON CONTINUOUS SOLUTIONS OF A FUNCTIONAL EQUATION OF ITERATIVE TYPE

ZEQING LIU AND JEONG SHEOK UME

Abstract

Properties of continuous solutions of the functional equation $\sum_{i=1}^{n} \lambda_{i} f^{2 i-1}(x)=F(x)$ are discussed. Under some conditions we prove the existence, uniqueness and stability of the continuous solutions of the equation.

1. Introduction. The iterative equation

$$
\begin{equation*}
f^{n}(x)=F(x), \tag{1.1}
\end{equation*}
$$

is an important form of functional equations, where $f: I=[a, b] \rightarrow I$ is an unknown function, f^{n} denotes the n-th iterate of f. Abel [1], Bödewadt [2], Dubbey [4], Fort [6], Kuczma [7, 8] and others established the existence of solutions for equation (1.1). It is well known that equation (1.1) has a continuous solution for any n if F is a strictly increasing continuous function and equation (1.1) has no continuous solutions for even n if F is a strictly decreasing continuous function. Recently, a few elegant results for equation

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i} f^{i}(x)=F(x) \tag{1.2}
\end{equation*}
$$

have been obtained in $[\mathbf{3}]$ and $[\mathbf{9}-\mathbf{1 2}]$. In particular, Zhang $[\mathbf{1 0}, \mathbf{1 1}]$ discussed the existence, uniqueness and stability of continuous solutions of equation (1.2), where F is a strictly increasing continuous function in $[a, b]$ and has fixed points a, b.

[^0]
[^0]: 1991 AMS Mathematics Subject Classification. 39B12, 39B20.
 Key words and phrases. Functional equation, Ascoli-Arzela lemma, continuous solution, existence, uniqueness, stability, Schauder's fixed point theorem, Edelstein's fixed point theorem.

 The second author was supported by Korea Research Foundation grant (KRF-2001-015-DP0025).

 Received by the editors on October 31, 2000, and in revised form on August 23, 2001.

