ON SUMS OF TWO SQUARES AND SUMS OF TWO TRIANGULAR NUMBERS

JOHN A. EWELL

Abstract

For each integer $n \geq 0, r_{2}(n)\left[t_{2}(n)\right]$ denotes the number of representations of n by sums of two squares (two triangular numbers). Similarities and differences of the two functions r_{2} and t_{2} are described, with the major contribution being an apparently new recursive determination of t_{2}.

1. Introduction. We begin with a definition.

Definition 1.1. As usual, $\mathbf{P}:=\{1,2,3, \ldots\}, \mathbf{N}:=\mathbf{P} \cup\{0\}$ and $\mathbf{Z}:=\{0, \pm 1, \pm 2, \ldots\}$. Then for each $n \in \mathbf{N}$,

$$
\begin{aligned}
r_{2}(n) & :=\left|\left\{(x, y) \in \mathbf{Z}^{2} \mid n=x^{2}+y^{2}\right\}\right| \\
t_{2}(n) & :=\left|\left\{(x, y) \in \mathbf{N}^{2} \mid n=x(x+1) / 2+y(y+1) / 2\right\}\right|
\end{aligned}
$$

Also for each $n \in \mathbf{P}$ and each $i \in\{1,3\}$,

$$
d_{i}(n):=\sum_{\substack{d \mid n \\ d \equiv i(\bmod 4)}} 1 .
$$

That the functions r_{2} and t_{2} are closely related is revealed by the next two theorems and their obvious corollary.

Theorem 1.2 (Jacobi). For each $n \in \mathbf{P}$,

$$
r_{2}(n)=4\left\{d_{1}(n)-d_{3}(n)\right\} .
$$

(Of course, $r_{2}(0)=1$.)
2000 AMS Mathematics Subject Classification. Primary 11E25, Secondary 05A20.

Key words and phrases. Representations of numbers by sums of two squares and by sums of two triangular numbers, combinatorial identities.

Received by the editors on May 29, 2001.

