SOLUTION OF A PROBLEM ABOUT SYMMETRIC FUNCTIONS

ROBERTO DVORNICICH AND UMBERTO ZANNIER

ABSTRACT. Let a>b>c be positive integers with (a,b,c)=1. Then the field $\mathbf{Q}(X^a+Y^a,X^b+Y^b,X^c+Y^c)$ is the field of all symmetric rational functions in X,Y over \mathbf{Q} . This solves a conjecture made by Mead and Stein.

Let X,Y be independent indeterminates and, for a positive integer m, let

$$N_m = N_m(X, Y) = X^m + Y^m$$

be the Newton symmetric power of order m. In the recent paper [2], the authors calculate the degree $[S: \mathbf{Q}(N_a, N_b)]$, where S is the field of all symmetric rational functions in X, Y with rational coefficients. They also raise a few conjectures on the fields $\mathbf{Q}(N_a, N_b, N_c)$. The purpose of the present paper is to prove their main Conjecture 1, which we state as the following.

Theorem 1. If a > b > c are distinct positive integers with (a, b, c) = 1, then the functions N_a, N_b, N_c generate S over \mathbb{Q} .

In [2] the authors also state a conjecture (see Conjecture 4 of Section 3) about the minimal degree d of a polynomial relation satisfied by N_a, N_b, N_c where, by degree of a monomial $N_a^i N_b^j N_c^k$, they mean ai + bj + ck. At the end of the paper we shall show how our Theorem 1 implies a strong form of their conjecture, namely,

Theorem 2. Assumptions being as in Theorem 1, we have d = abc/2 if abc is even and d = (a-1)bc/2 otherwise.

Proof of Theorem 1. To start with, we show that it is sufficient to prove the analogous statement with \mathbf{Q} replaced by its algebraic closure

Received by the editors on October 2, 2000, and in revised form on March 21, 2001.