SOLUTION OF A PROBLEM ABOUT SYMMETRIC FUNCTIONS

ROBERTO DVORNICICH AND UMBERTO ZANNIER

> ABSTRACT. Let $a>b>c$ be positive integers with $(a, b, c)=1$. Then the field $\mathbf{Q}\left(X^{a}+Y^{a}, X^{b}+Y^{b}, X^{c}+Y^{c}\right)$ is the field of all symmetric rational functions in X, Y over \mathbf{Q}. This solves a conjecture made by Mead and Stein.

Let X, Y be independent indeterminates and, for a positive integer m, let

$$
N_{m}=N_{m}(X, Y)=X^{m}+Y^{m}
$$

be the Newton symmetric power of order m. In the recent paper [2], the authors calculate the degree $\left[S: \mathbf{Q}\left(N_{a}, N_{b}\right)\right.$], where S is the field of all symmetric rational functions in X, Y with rational coefficients. They also raise a few conjectures on the fields $\mathbf{Q}\left(N_{a}, N_{b}, N_{c}\right)$. The purpose of the present paper is to prove their main Conjecture 1, which we state as the following.

Theorem 1. If $a>b>c$ are distinct positive integers with $(a, b, c)=1$, then the functions N_{a}, N_{b}, N_{c} generate S over \mathbf{Q}.

In [2] the authors also state a conjecture (see Conjecture 4 of Section 3) about the minimal degree d of a polynomial relation satisfied by N_{a}, N_{b}, N_{c} where, by degree of a monomial $N_{a}^{i} N_{b}^{j} N_{c}^{k}$, they mean $a i+b j+c k$. At the end of the paper we shall show how our Theorem 1 implies a strong form of their conjecture, namely,

Theorem 2. Assumptions being as in Theorem 1, we have $d=a b c / 2$ if $a b c$ is even and $d=(a-1) b c / 2$ otherwise.

Proof of Theorem 1. To start with, we show that it is sufficient to prove the analogous statement with \mathbf{Q} replaced by its algebraic closure

[^0]
[^0]: Received by the editors on October 2, 2000, and in revised form on March 21, 2001.

