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THE AUTOMORPHISM GROUPS
OF THE HYPERELLIPTIC SURFACES

CURTIS BENNETT AND RICK MIRANDA

1. Introduction. In this paper we will compute the automorphism
groups of the so-called hyperelliptic surfaces. These compact complex
surfaces are characterized by having invariants pg = 0, q = 1, and
12K = 0. References for the elementary properties of these surfaces
may be found in [2] (where they are called “bielliptic surfaces”) or in
[1]. They may all be constructed as the quotient X = (E×F )/G, where
E and F are elliptic curves, and G is a finite group of translations of
E acting also on F not only as a group of translations; the action on
E × F is the diagonal action.

There are seven non-isomorphic groups G which can act on E×F as
above, two of which act on any E×F , the other five requiring F to be
a specific elliptic curve. In the following table the reader will find a list
of the seven groups G, together with the elliptic curves E and F , and
the action of G on E × F .

Write E = C/(Z + Zτ1) and F = C/(Z + Zτ2). Throughout this
article we will use the notation i =

√−1, ω = e2πi/3, and ζ = eπi/3;
note that ω = ζ2.

In the last three cases it is technically more convenient to consider
X = (E × F )/G as the quotient of Y = (E × F )/〈ψ〉 by a cyclic
group of order r(= 2, 3, 4, or 6), generated by the automorphism φ
induced by φ. Since ψ is a translation of E × F, Y is also a complex
torus of dimension two. For uniformity of notation we will define
Y = E × F and ψ = identity in the first four cases, so that in
each case X = Y/〈φ〉. Note that r is the order of the canonical
class KX in Pic (X) and Y is the etale cyclic cover of X defined by
KX : Y = Spec (⊕r−1

i=0ϕX(iKX)), with the multiplication in ϕY defined
by a chosen isomorphism θ : ϕX → ϕX(rKX). The formation of Y
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