A NOTE ON THE CYCLIC COHOMOLOGY AND K-THEORY ASSOCIATED WITH DIFFERENCE OPERATORS

DAOXING XIA

ABSTRACT. The index map of K_0 -theory associated with a difference operator is given. In the odd dimension case, a theorem on the cyclic cohomology is established.

1. This note is a continuation of the author's previous paper [2]. Let \mathcal{A} and \mathcal{A}_1 be two algebras over \mathbf{C} satisfying $\mathcal{A} \subset \mathcal{A}_1$. As it is introduced in [2], an operator δ from \mathcal{A} into \mathcal{A}_1 is said to be a difference operator if δ is linear and satisfies

(1)
$$\delta(fg) = f\delta g + (\delta f)g - (\delta f)\delta g$$

for $f, g \in \mathcal{A}$.

In [2], the following theorem is proved.

THEOREM. Let \mathcal{H} be a Hilbert space, \mathcal{A} a subalgebra of $\mathcal{L}(\mathcal{H})$ and δ a difference operator from \mathcal{A} into $\mathcal{L}(\mathcal{H})$ satisfying

$$\delta f \in \mathcal{L}^p(\mathcal{H}), \quad f \in \mathcal{A},$$

where $p \geq 1$. Let n be an even number satisfying $n \geq p-1$ and

$$\psi_n(f_0,\ldots,f_n) = \operatorname{tr}(\delta f_0 \cdots \delta f_n), \quad f_0,\ldots,f_n \in \mathcal{A}.$$

Then ψ_n is a cyclic cocycle. If $n \geq p+1$, then ψ_n is in the cyclic cohomology class containing $bR_{n-2}\psi_{n-2}$, where R_k is the operation

$$(R_k \xi)(f_0, f_1, \dots, f_{k+1})$$

$$= \frac{2}{k+2} \sum_{j=0}^k (-1)^j (k-j+1) \xi(f_j f_{j+1}, f_{j+2}, \dots, f_{j+k+1})$$

Received by the editors on October 8, 1987. Supported in part by NSF grant DMS-8700048.

Copyright ©1990 Rocky Mountain Mathematics Consortium