ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 20, Number 2, Winter 1990

THE SPATIAL FORM OF ANTIAUTOMORPHISMS OF VON NEUMANN ALGEBRAS

ERLING STØRMER

1. Introduction. There are three problems which have been studied concerning antiautomorphisms of von Neumann algebras; the existence problem, the conjugacy problem, and their description. The latter problem includes whether they are spatial of a particular form, i.e., of the form $x \to w^* x^* w$ with w a conjugate linear isometry of a prescribed type. In the present paper we shall study the spatial problem, with main emphasis on antiautomorphisms α leaving the center elementwise fixed, called *central* in the sequel, and with α an *involution*, i.e., $\alpha^2 = 1$. This problem with variations has previously been studied in [2, 6]. E.g., it was shown in [6] that a central involution α is automatically spatial with w^2 a selfadjoint unitary operator in the center of the von Neumann algebra.

It turns out that the general problem of whether a central antiautomorphism is spatial has a solution similar to that of automorphisms, with proof also quite similar. We include these results for the sake of completeness. The main new ingredient in the paper is that if α is a central involution of the von Neumann algebra M then α is necessarily of the form $\alpha(x) = Jx^*J$ with J a conjugation, unless the commutant M' of M has a direct summand of type I_n with n odd. In the latter case it may happen that α can only be written in the form $\alpha(x) = -jx^*j$ with $j^2 = -1$.

2. The results. Recall that two projections e and f in a von Neumann algebra M acting on a Hilbert space H are said to be equivalent, written $e \sim f \pmod{M}$, or just $e \sim f$ if there is a partial isometry $v \in M$ such that $v^*v = e$, $vv^* = f$. e is said to be cyclic, written $e = [M'\xi]$ if there is a vector $\xi \in H$ such that e is the projection onto the space spanned by vectors of the form $x'\xi$, $x' \in M'$. If w is a conjugate linear operator we denote by w^* its adjoint, viz, $(w^*\xi, \eta) = (w\eta, \xi)$. We denote by ω_{ξ} the positive functional $\omega_{\xi}(x) = (x\xi, \xi)$ on M.

Received by the editors on October 15, 1987, and in revised form, on January 25, 1987.

Copyright ©1990 Rocky Mountain Mathematics Consortium