THE SPATIAL FORM OF ANTIAUTOMORPHISMS OF VON NEUMANN ALGEBRAS

ERLING STØRMER

1. Introduction. There are three problems which have been studied concerning antiautomorphisms of von Neumann algebras; the existence problem, the conjugacy problem, and their description. The latter problem includes whether they are spatial of a particular form, i.e., of the form $x \rightarrow w^{*} x^{*} w$ with w a conjugate linear isometry of a prescribed type. In the present paper we shall study the spatial problem, with main emphasis on antiautomorphisms α leaving the center elementwise fixed, called central in the sequel, and with α an involution, i.e., $\alpha^{2}=1$. This problem with variations has previously been studied in $[\mathbf{2}, \mathbf{6}]$. E.g., it was shown in [6] that a central involution α is automatically spatial with w^{2} a selfadjoint unitary operator in the center of the von Neumann algebra.

It turns out that the general problem of whether a central antiautomorphism is spatial has a solution similar to that of automorphisms, with proof also quite similar. We include these results for the sake of completeness. The main new ingredient in the paper is that if α is a central involution of the von Neumann algebra M then α is necessarily of the form $\alpha(x)=J x^{*} J$ with J a conjugation, unless the commutant M^{\prime} of M has a direct summand of type I_{n} with n odd. In the latter case it may happen that α can only be written in the form $\alpha(x)=-j x^{*} j$ with $j^{2}=-1$.
2. The results. Recall that two projections e and f in a von Neumann algebra M acting on a Hilbert space H are said to be equivalent, written $e \sim f(\bmod M)$, or just $e \sim f$ if there is a partial isometry $v \in M$ such that $v^{*} v=e, v v^{*}=f . e$ is said to be cyclic, written $e=\left[M^{\prime} \xi\right]$ if there is a vector $\xi \in H$ such that e is the projection onto the space spanned by vectors of the form $x^{\prime} \xi, x^{\prime} \in M^{\prime}$. If w is a conjugate linear operator we denote by w^{*} its adjoint, viz, $\left(w^{*} \xi, \eta\right)=(w \eta, \xi)$. We denote by ω_{ξ} the positive functional $\omega_{\xi}(x)=(x \xi, \xi)$ on M.

[^0]
[^0]: Received by the editors on October 15, 1987, and in revised form, on January 25 , 1987.

