ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 20, Number 2, Spring 1990

ON SPECTRAL PROPERTIES OF ALMOST MATHIEU OPERATORS AND CONNECTIONS WITH IRRATIONAL ROTATION C*-ALGEBRAS

NORBERT RIEDEL

1. In [2] we introduced some concepts that led to a study of some almost periodic Schrödinger operators in the light of the C^* -algebras they are associated with in a natural way. More specifically, our topic is almost Mathieu operators $h(\alpha, \beta)$, in the setup of irrational rotation C^* -algebras. Let α be an irrational number and let u, v be two unitary operators such that $uv = e^{2\pi\alpha i}vu$. Then $h(\alpha, \beta)$ is the self-adjoint element $u + u^* + \beta(v + v^*)$ in the C^* -algebra \mathcal{A}_{α} generated by the operators u and v.

In what follows we shall discuss some problems related to this C^* algebraic approach. First, we investigate (primarily from an algebraic point of view) the difference equation that characterizes all formal Fourier series in u and v which commute with $h(\alpha, \beta)$. Then we apply this to exhibit domains for β where $h(\alpha, \beta)$ fails to have point spectrum under certain representations of \mathcal{A}_{α} on the Hilbert space $\ell^2(\mathbf{Z})$. Finally, using rational interpolation, we give a characterization in terms of C^* algebras of those operators $h(\alpha, \beta)$ which have a Cantor spectrum.

2. In the sequel we always assume that α is an irrational number and $\beta \notin \{-1, 0, 1\}$. A state ϕ on \mathcal{A}_{α} is called an eigenstate of $h(\alpha, \beta)$ for some $\chi \in \text{Sp}(h(\alpha, \beta))$ (cf. [2]) if

$$\phi(ha) = \chi \phi(a) \quad \text{for all } a \in \mathcal{A}_{\alpha}.$$

The dimension of the linear subspace of the dual \mathcal{A}^*_{α} generated by the eigenstates for χ is called the multiplicity of $\chi \in \mathrm{Sp}(h(\alpha,\beta))$. The multiplicity of χ is always less than or equal to two. We consider the automorphisms σ of \mathcal{A}_{α} determined by $\sigma(u) = u^*, \sigma(v) = v^*$. Let $\lambda = e^{\pi \alpha i}$ and, for $p, q \in \mathbf{Z}$, let $S_{pq} = \lambda^{-pq}(u^p v^q + u^{-p} v^{-q}), T_{pq} = \lambda^{-pq}(u^p v^q - u^{-p} v^{-q})i$.

Partially supported by NSF Grant No. DMS 862-357.

Received by the editors on November 23, 1987 and, in revised form, on January 20, 1988.

Copyright ©1990 Rocky Mountain Mathematics Consortium