AF SUBALGEBRAS OF CERTAIN CROSSED PRODUCTS

YIU TUNG POON

ABSTRACT. Let (X,T) be a dynamical system with X zero dimensional. Each closed subset Y of X gives rise to a subalgebra A_Y of the crossed product C^* -algebra $C(X) \times_T \mathbf{Z}$. We give a necessary and sufficient condition on Y for A_Y to be an AF algebra. Suppose Y_1 and Y_2 are two clopen subsets satisfying the condition. We show that Y_1 and Y_2 are homeomorphic as topological spaces if and only if the AF algebras A_{Y_1} and A_{Y_2} are stably isomorphic. Finally, we show that, if the non-periodic points are dense in X and Y is a minimal subset satisfying the condition, then A_Y is a maximal AF subalgebra among the regular subalgebras of $C(X) \times_T \mathbf{Z}$.

1. Introduction. Given a compact space X, C(X) will denote the C^* -algebra of complex continuous functions on X. A compact metrizable space X is said to be zero dimensional if the topology on X has a basis consisting of sets which are both closed and open (clopen). In this note we study systems (X,T) where X is a zero dimensional space and T is a homeomorphism on X. Given such a system, we have an action of the integers **Z** on C(X). This gives a crossed product algebra $C(X) \times_T \mathbf{Z}$ (see Pedersen [5]) which is a C^* -algebra generated by C(X) and a unitary U satisfying $UfU^* = f \circ T^{-1}$ for $f \in C(X)$. In [7], we show that the order structure on $K_0(C(X) \times_T \mathbf{Z})$ is useful in the study of classification problems of such systems and the crossed product algebras. (We will use Blackadar [1] and Effros [3] for our reference on K-theory). A system (X,T) is said to be minimal if X contains no non-empty T-invariant proper closed subsets. In recent works [9, 10], Putnam proved, among other results, that if X does not have isolated points and the system (X,T) is minimal, then, for every closed subset Y, the C^* -subalgebra of $C(X) \times_T \mathbf{Z}$ generated by C(X)and $\{Uf: f \in C(X), f(y) = 0 \text{ for all } y \in Y\}$ is an AF algebra [9, 10], i.e., A_Y is the closure of an increasing sequence of finite dimensional subalgebras. This result is crucial in his study of AF-subalgebras of $C(X) \times_T \mathbf{Z}$ [10] and the order structure of $K_0(C(X) \times_T \mathbf{Z})$ [9]. In §2, given any (X,T) (not necessarily minimal) and a closed subset Y, we prove that A_Y is an AF algebra if and only if, for every clopen subset Copyright ©1990 Rocky Mountain Mathematics Consortium