BIMODULES OVER CARTAN SUBALGEBRAS

RICHARD MERCER

Abstract

Given a Cartan subalgebra \mathbf{A} of a von Neumann algebra \mathbf{M}, the techniques of Feldman and Moore are used to analyze the partial isometries v in \mathbf{M} such that $v^{*} \mathbf{A} v$ is contained in \mathbf{A}. Orthonormal bases for \mathbf{M} consisting of such partial isometries are discussed, and convergence of the resulting generalized fourier series is shown to take place in the Bures A-topology. The Bures A-topology is shown to be equivalent to the strong topology on the unit ball of \mathbf{M}. These ideas are applied to \mathbf{A}-bimodules in \mathbf{M} to prove the existence of orthonormal bases for bimodules and to give a simplified and intuitive proof of the Spectral Theorem for Bimodules first proven by Muhly, Saito, and Solel.

1. Introduction. The notion of a triangular subalgebra of a von Neumann algebra \mathbf{M} was introduced in a paper of Kadison and Singer [7]; it is defined to be an algebra \mathbf{T} of operators in \mathbf{M} such that $\mathbf{T} \cap \mathbf{T}^{*}$ is a maximal abelian subalgebra \mathbf{A} of \mathbf{M}, called the diagonal of \mathbf{T}. In a recent paper of Muhly, Saito and Solel [8] (referred to here as MSS) triangular subalgebras whose diagonal is a Cartan subalgebra of \mathbf{M} were considered and analyzed using a formalism developed by Feldman and Moore in $[4,5]$ which is summarized below. A subspace of \mathbf{M} which is invariant under left and right multiplication by members of \mathbf{A} is called an A-bimodule; this class of subspaces includes subalgebras of \mathbf{M} containing \mathbf{A} and in particular triangular subalgebras with diagonal A. In MSS a critical role was played by the Spectral Theorem for Bimodules in which σ-weakly closed A-bimodules are characterized.
In the introduction of MSS a simple and elegant motivation of the Spectral Theorem for Bimodules is given in the finite-dimensional case, but the proof of this theorem in the context of a Cartan subalgebra doesn't follow the motivation given. In $\S 5$ of this paper it is shown that the motivation and proof of the finite dimensional case can in fact be carried through to the case of a Cartan subalgebra. Some preliminary
[^0]
[^0]: Received by the editors on August 12, 1987 and, in revised form, on January 4, 1988.

