# ON THE EQUIVALENCE OF THE OPERATOR <br> EQUATIONS $X A+B X=C$ AND $X-p(-B) X p(A)^{-1}=W$ IN A HILBERT SPACE, $p$ A POLYNOMIAL 

TAPAS MAZUMDAR AND DAVID F. MILLER


#### Abstract

We consider the solution of $(*) X A+B X=C$ for bounded operators $A, B, C$ and $X$ on a Hilbert space, $A$ normal. We establish the existence of a polynomial $p$ and a bounded operator $W$ with the property that the unique solution $X$ of (*) also solves $X-p(-B) X p(A)^{-1}=W$ uniquely. A known iterative algorithm can be applied to the latter equation to solve (*).


1. Introduction and notations. We know that the equation

$$
\begin{equation*}
X A+B X=C \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\sigma(A) \cap \sigma(-B)=\phi \tag{2}
\end{equation*}
$$

in which $A, B, C$ are given finite-dimensional matrices of compatible orders, and $\sigma(T)$ is the spectrum of the matrix $T$ (or possibly the operator $T$ ), has a unique matrix solution $X[\mathbf{7}, \mathbf{9}]$. Letting $r(T)$ denote the spectral radius of $T$, an iterative method to calculate the matrix solution $X$ of the system (1), (2) is obtained if we can rewrite (1) in an equivalent form

$$
\begin{equation*}
X-U X V=W \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
r(U) r(V)<1 \tag{4}
\end{equation*}
$$

When this is possible, the recursion

$$
\begin{equation*}
X_{k+1}=U^{2^{k}} X_{k} V^{2^{k}}+X_{k}, \quad X_{0}=W \tag{5}
\end{equation*}
$$

[^0]
[^0]:    Received by the editors on November 6, 1987 and, in revised form on March 21, 1988.

